Research Articles
Molecular characterisation of human peripheral blood stem cells
Submitted: 19 September 2011 | Published: 21 May 2012
About the author(s)
Ruzanna Ab Kadir, School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia, Bangi, Selangor, MalaysiaShahrul Hisham Zainal Ariffin, School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia, Bangi, Selangor, Malaysia
Rohaya Megat Abdul Wahab, Department of Orthodontics, Faculty of Dentistry, National University of Malaysia, Bangi, Selangor, Malaysia
Sahidan Senafi, School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia, Bangi, Selangor, Malaysia
Abstract
Keywords
Metrics
Total abstract views: 2678Total article views: 3430
References
Weissman I, Anderson D, Gage F. Stem and progenitor cells: Origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol. 2001;17:387–403. http://dx.doi.org/10.1146/annurev.cellbio.17.1.387, PMid:11687494
Shahrul Hisham ZA, Intan Zarina ZA, Sahidan S, Nor Muhammad M, Rohaya MAW, Zaidah ZA. Stem cells in blood development. Sains Malaysiana. 2005;34(1):21–26.
Shahrul Hisham ZA, Rohaya MAW, Ismanizan I, Nor Muhammad M, Zaidah ZA. Stem cells, cytokines and their receptors. As Pac J Mol Biol Biotechnol. 2005;13(1):1–13.
Hentze H, Graichen R, Colman A. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol. 2007;25(1):24–32. http://dx.doi.org/10.1016/j.tibtech.2006.10.010, PMid:17084475
.5 Togel F, Westenfelder C. Adult bone marrow-derived stem cells for organ regeneration and repair. Dev Dyn. 2007;236(12):3321–3331. http://dx.doi.org/10.1002/dvdy.21258, PMid:17685479
Alhadlaq A, Mao JJ. Mesenchymal stem cells: Isolation and therapeutics. Stem Cells Dev. 2004;13(4):436–448. http://dx.doi.org/10.1089/scd.2004.13.436, PMid:15345137
Wognum AW, Eaves AC, Thomas TE. Identification and isolation of hematopoietic stem cells. Arch Med Res. 2003;34(6):461–475. http://dx.doi.org/10.1016/j.arcmed.2003.09.008, PMid:14734086
Arslan O, Moog R. Mobilization of peripheral blood stem cells. Transfus Apher Sci. 2007;37(2):179–185. http://dx.doi.org/10.1016/j.transci.2007.08.002, PMid:17980665
Ariffin SH, Abidin IZ, Yazid MD, Wahab RM. Differentiation analyses of adult suspension mononucleated peripheral blood cells of Mus musculus. Cell Commun Signal. 2010;8:29. http://dx.doi.org/10.1186/1478-811X-8-29, PMid:20969794
Bobis S, Jarocha D, Majka M. Mesenchymal stem cells: Characteristics and clinical applications. Folia Histochem Cytobiol. 2006;44(4):215–230. PMid:17219716
Barber RD, Harmer DW, Coleman RA, Clark BJ. GAPDH as a housekeeping gene: Analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics. 2005;21(3):389–395. http://dx.doi.org/10.1152/physiolgenomics.00025.2005, PMid:15769908
Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med. 1998;4(9):1038–1045. http://dx.doi.org/10.1038/2023, PMid:9734397
Guo Y, Lübbert M, Engelhardt M. CD34 hematopoietic stem cells: Current concepts and controversies. Stem Cells. 2003;21(1):15–20. http://dx.doi.org/10.1634/stemcells.21-1-15, PMid:12529547
Larochelle A, Vormoor J, Hanenberg H, et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapy. Nat Med. 1996;2(12):1329–1337. http://dx.doi.org/10.1038/nm1296-1329, PMid:8946831
Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95(3):952–958. PMid:10648408
Kent DG, Copley MR, Benz C, et al. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood. 2009;113(25):6342–6350. http://dx.doi.org/10.1182/blood-2008-12-192054, PMid:19377048
Engel P, Eck MJ, Terhorst C. The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nat Rev Immunol. 2003;3(10):813–821. http://dx.doi.org/10.1038/nri1202, PMid:14523387
Sidorenko SP, Clark EA. The dual-function CD150 receptor subfamily: The viral attraction. Nat Immunol. 2003;4(1):19–24. http://dx.doi.org/10.1038/ni0103-19, PMid:12496974
Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109–1121. http://dx.doi.org/10.1016/j.cell.2005.05.026, PMid:15989959
Howie D, Okamoto S, Rietdijk S, et al. The role of SAP in murine CD150 (SLAM)-mediated T-cell proliferation and interferon gamma production. Blood. 2002;100(8):2899–2907. http://dx.doi.org/10.1182/blood-2002-02-0445, PMid:12351401
Wang N, Satoskar A, Faubion W, et al. The cell surface receptor SLAM controls T cell and macrophage functions. J Exp Med. 2004;199(9):1255–1264. http://dx.doi.org/10.1084/jem.20031835, PMid:15123745
Gaebel R, Furlani D, Sorg H, et al. Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration. PLoS One. 2011;6(2):e15652. http://dx.doi.org/10.1371/journal.pone.0015652, PMid:21347366
Duff SE, Li C, Garland JM, Kumar S. CD105 is important for angiogenesis: Evidence and potential applications. FASEB J. 2003;17(9):984–992. http://dx.doi.org/10.1096/fj.02-0634rev, PMid:12773481
Shi Z, Silveira A, Patel P, Feng X. YY1 is involved in RANKL-induced transcription of the tartrate-resistant acid phosphatase gene in osteoclast differentiation. Gene. 2004;343(1):117–126. http://dx.doi.org/10.1016/j.gene.2004.08.009, PMid:15563837
Feng X, Novack DV, Faccio R, et al. A Glanzmann’s mutation in beta 3 integrin specifically impairs osteoclast function. J Clin Inves. 2001;107(9):1137–1144. http://dx.doi.org/10.1172/JCI12040, PMid:11342577
Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–342. http://dx.doi.org/10.1038/nature01658, PMid:12748652
Yazid MD, Ariffin SH, Senafi S, Razak MA, Wahab RM. Determination of the differentiation capacities of murines’ primary mononucleated cells and MC3T3-E1 cells. Cancer Cell Int. 2010;10:42. http://dx.doi.org/10.1186/1475-2867-10-42, PMid:20979664
Matsuo K, Irie N. Osteoclast–osteoblast communication. Arch Biochem Biophys. 2008;473(2):201–209. http://dx.doi.org/10.1016/j.abb. 2008.03.027, PMid:18406338
Kartsogiannis V, Ng KW. Cell lines and primary cells cultures in the study of bone cell biology. Mol Cell Endocrinol. 2004;228(1–2):79–102. http://dx.doi.org/10.1016/j.mce.2003.06.002, PMid:15541574
Valenti MT, Dalle Carbonare L, Donatelli L, Bertoldo F, Zanatta M, Lo Cascio V. Gene expression analysis in osteoblastic differentiation from peripheral blood mesenchymal stem cells. Bone. 2008;43(6):1084–1092. http://dx.doi.org/10.1016/j.bone.2008.07.252, PMid:18761114
Li Z, Zhou Z, Saunders MM, Donahue HJ. Modulation of connexin43 alters expression of osteoblastic differentiation markers. J Cell Physiol. 2006;290:1248–1255. http://dx.doi.org/10.1152/ajpcell.00428.2005, PMid:16319124, PMid:15345137
Reader Comments
Before posting a comment, read our privacy policy.Comments on this article
Post a comment (login required)
Crossref Citations
1. Isolation and Characterization of Multipotent and Pluripotent Stem Cells from Human Peripheral Blood
Ciro Gargiulo, Van Hung Pham, Nguyen Thuy Hai, Kieu C. D. Nguyen, Pham Van Phuc, Kenji Abe, Veronica Flores, Melvin Shiffman
Stem Cell Discovery vol: 05 issue: 03 first page: 19 year: 2015
doi: 10.4236/scd.2015.53003
by Prof. Jeanne Adiwinata Pawitan (23-Sep-12)