Research Articles

The evolution of cranial form in mid-Pleistocene Homo

G. Philip Rightmire
South African Journal of Science | Vol 108, No 3/4 | a719 | DOI: https://doi.org/10.4102/sajs.v108i3/4.719 | © 2012 G. Philip Rightmire | This work is licensed under CC Attribution 4.0
Submitted: 20 April 2011 | Published: 09 March 2012

About the author(s)

G. Philip Rightmire, Harvard University, United States


Share this article

Bookmark and Share

Abstract

Interactions of the brain and cranium in archaic populations remain poorly understood. Hominin fossils from Middle Pleistocene localities in Africa and Europe have been allocated to one or more species distinct from Homo erectus, the Neanderthals and modern humans, based on the assumption that characters of the vault and face are developmentally independent. However, it is possible that increased frontal width, parietal lengthening, midvault expansion and occipital rounding all reflect encephalisation occurring within the H. erectus lineage. If specimens from Broken Hill and Elandsfontein (in southern Africa) and Sima de los Huesos and Petralona (in Europe) differ from H. erectus only in brain volume, then it will be difficult to distinguish and diagnose Homo rhodesiensis or Homo heidelbergensis adequately. In this study, correlation analysis showed that the brain fails to influence vault breadth within either H. erectus or the mid-Pleistocene sample. Instead, the (large) cranial base has a major effect on width. Variation in brain volume is not associated with frontal flattening. In H. erectus and in individuals such as Bodo and Petralona, the massive face seems to override the brain as a determinant of frontal curvature. Small H. erectus crania have rounded occipitals, whilst larger individuals show greater flexion. Later hominins do not follow this trend, and encephalisation cannot explain the occipital rounding that is present. Few of the vault characters considered diagnostic for the mid-Pleistocene fossils can be attributed to increasing brain volume. The situation is complex, as of course the brain must influence some traits indirectly. The cranial base is also an instrument of change. Discriminant analysis identified basicranial breadth as critical to distinguishing individuals such as Broken Hill, Sima de los Huesos and Petralona from H. erectus.

Keywords

encephalisation; basicranium; correlation; integration; discriminant analysis; systematics; species; Homo erectus; Homo heidelbergensi

Metrics

Total abstract views: 1073
Total article views: 1931

References


Singer R, Wymer J. Archaeological investigations at the Saldanha skull site in South Africa. S Afr Archaeol Bull. 1968;25:63–74. http://dx.doi.org/10.2307/3888485

Klein RG, Avery G, Cruz-Uribe K, Steele TE. The mammalian fauna associated with an archaic hominin skullcap and later Acheulean artifacts at Elandsfontein, Western Cape Province, South Africa. J Hum Evol. 2007;52:164–186. http://dx.doi.org/10.1016/j.jhevol.2006.08.006, PMid:17030056

Rightmire GP. The human cranium from Bodo, Ethiopia: Evidence for speciation in the Middle Pleistocene? J Hum Evol. 1996;31:21–39. http://dx.doi.org/10.1006/jhev.1996.0046

Clark JD, De Heinzelin J, Schick KD, et al. African Homo erectus: Old radiometric ages and young Oldowan assemblages in the Middle Awash Valley, Ethiopia. Science. 1994;1907–1910. http://dx.doi.org/10.1126/science.8009220, PMid:8009220

Bischoff JL, Shamp DD, Aramburu A, Arsuaga JL, Carbonell E, Bermúdez de Castro JM. The Sima de los Huesos hominids date to beyond U/Th equilibrium (>350 kyr) and perhaps to 400-500 kyr: New radiometric dates. J Archaeol Sci. 2003;30:275–280. http://dx.doi.org/10.1006/jasc.2002.0834

Bischoff JL, Williams RW, Rosenbauer RJ, et al. High-resolution U-series dates from the Sima de los Huesos hominids yields 600 + ∞/ - 66 kyrs: Implications for the evolution of the early Neanderthal lineage. J Archaeol Sci. 2007;34:763–770. http://dx.doi.org/10.1016/j.jas.2006.08.003

Rightmire GP. Human evolution in the Middle Pleistocene: The role of Homo heidelbergensis. Evol Anthropol. 1998;6:218–227. http://dx.doi.org/10.1002/(SICI)1520-6505(1998)6:6<218::AID-EVAN4>3.0.CO;2-6

Harvati K, Hublin JJ, Gunz P. Evolution of middle-late Pleistocene human cranio-facial form: A 3-D approach. J Hum Evol. 2010;59:445–464. http://dx.doi.org/10.1016/j.jhevol.2010.06.005, PMid:20708775

Harvati K, Hublin JJ, Gunz P. Three dimensional evaluation of Neanderthal craniofacial features in the European and African Middle Pleistocene human fossil record (abstract). Am J Phys Anthropol. 2011;52:157.

Moore WJ, Lavelle CJB. Growth of the facial skeleton in the Hominoidea. London: Academic Press; 1974.

Sirianni JE, Swindler DR. Growth and development of the pigtailed macaque. Boca Raton, FL: CRC Press; 1985.

Sperber GH. Craniofacial embryology. 4th ed. London: Wright; 1989.

Enlow DH. Facial growth. 3rd ed. Philadelphia: WB Saunders; 1990.

Ross CF, Ravosa MJ. Basicranial flexion, relative brain size and facial kyphosis in nonhuman primates. Am J Phys Anthropol. 1993;91:305–324. http://dx.doi.org/10.1002/ajpa.1330910306, PMid:8333488

Lieberman DE, Ross CF, Ravosa MJ. The primate cranial base: Ontogeny, function, and integration. Yearb Phys Anthropol. 2000;43:117–169. http://dx.doi.org/10.1002/1096-8644(2000)43:31+<117::AID-AJPA5>3.3.CO;2-9

Bastir M, Rosas A, Stringer C, et al. Effects of brain and facial size on basicranial form in human and primate evolution. J Hum Evol. 2010;58:424–431. http://dx.doi.org/10.1016/j.jhevol.2010.03.001, PMid:20378153

Lieberman DE. The evolution of the human head. Cambridge: Belknap (Harvard University) Press; 2011.

Stringer CB. New views on modern human origins. In: Rasmussen DT, editor. The origin and evolution of humans and humanness. Boston, MA: Jones and Bartlett, 1993; p. 75–94.

Rightmire GP. Human evolution in the Middle Pleistocene: The role of Homo heidelbergensis. Evol Anthropol. 1998;6:218–227. http://dx.doi.org/10.1002/(SICI)1520-6505(1998)6:6<218::AID-EVAN4>3.0.CO;2-6

Rightmire GP. Homo in the Middle Pleistocene: Hypodigms, variation, and species recognition. Evol Anthropol. 2008;17:8–21. http://dx.doi.org/10.1002/evan.20160

Hublin JJ. The origin of Neandertals. Proc Natl Acad Sci USA. 2009;106:16022–16027. http://dx.doi.org/10.1073/pnas.0904119106, PMid:19805257

Mounier A, Marchal F, Condemi S. Is Homo heidelbergensis a distinct species? New insight on the Mauer mandible. J Hum Evol. 2009;56:219–246. http://dx.doi.org/10.1016/j.jhevol.2008.12.006, PMid:19249816

Lieberman DE, Bar-Yosef O. Apples and oranges: Morphological versus behavioral transitions in the Pleistocene. In: Lieberman DE, Smith RJ, Kelley J, editors. Interpreting the past: Essays on human, primate and mammal evolution. Boston, MA: Brill Academic Publishers, 2005; p. 275–296.

Howells WW. Cranial variation in man: A study by multivariate analysis of patterns of difference among recent human populations. Pap Peabody Mus. 1973;67:1–259.

Holloway RL, Broadfield DC, Yuan MS, Schwartz JH, Tattersall I. Brain endocasts: The paleoneurological evidence. The human fossil record 3. Hoboken, NJ: Wiley-Liss; 2004. http://dx.doi.org/10.1002/0471663573

Arsuaga JL, Martínez I, Gracia A, Lorenzo C. The Sima de los Huesos crania (Sierra de Atapuerca, Spain). A comparative study. J Hum Evol. 1997;33:219–281. http://dx.doi.org/10.1006/jhev.1997.0133, PMid:9300343

Spoor F, Leakey MG, Gathogo PN, et al. Implications of new early Homo fossils from Ileret, east of Lake Turkana, Kenya. Nature. 2007;448:688–691. http://dx.doi.org/10.1038/nature05986

Gilbert WH, Asfaw B. Homo erectus. Pleistocene evidence from the Middle Awash, Ethiopia. Berkeley, CA: University of California Press; 2008.

Kaifu Y, Aziz F, Indriati E, Jacob T, Kurniawan I, Baba H. Cranial morphology of Javanese Homo erectus: New evidence for continuous evolution, specialization, and terminal extinction. J Hum Evol. 2008;55:551–580. http://dx.doi.org/10.1016/j.jhevol.2008.05.002, PMid:18635247

Widianto H, Zeitoun V. Morphological description, biometry and phylogenetic position of the skull of Ngawi 1 (East Java, Indonesia). Int J Osteoarchaeol. 2003;13:339–351. http://dx.doi.org/10.1002/oa.694

Arif J, Baba H, Suparka ME, Zaim Y, Setoguchi T. Preliminary study of Homo erectus skull IX (Tig-1993.05) from Sangiran, central Java, Indonesia. Bull Nat Sci Mus Tokyo D. 2001;27:1–17.

Weidenreich F. The skull of Sinanthropus pekinensis: A comparative study of a primitive hominid skull. Palaeontol Sin D. 1943;10:1–484.

JMP. Version 8.0. Cary, NC: SAS Institute Inc; 2009.

Bielicki T, Miszkiewicz B, Hauser G. Archaic and modern craniometric variants in contemporary man. Monographs of the Institute of Anthropology. Wroclaw: Polish Academy of Sciences; 1990.

Dean MC, Leakey MG, Reid D, et al. Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature. 2001;414:628–631. http://dx.doi.org/10.1038/414628a, PMid:11740557

Dean MC. Tooth microstructure tracks the pace of human life-history evolution. Proc R Soc B. 2006;273:2799–2808. http://dx.doi.org/10.1098/rspb.2006.3583, PMid:17015331

Dean MC, Smith BH. Growth and development of the Nariokotome youth, KNM-WT 15000. In: Grine FE, Fleagle JG, Leakey RE, editors. The first humans: Origin and early evolution of the genus Homo. New York: Springer, 2009; p. 101–120. http://dx.doi.org/10.1007/978-1-4020-9980-9_10

Graves RR, Lupo AC, McCarthy RC, Wescott DJ, Cunningham DL. Just how strapping was KNM-WT 15000? J Hum Evol. 2010;59:542–554. http://dx.doi.org/10.1016/j.jhevol.2010.06.007, PMid:20846707

Coqueugniot H, Hublin JJ, Veillon F, Houet F, Jacob T. Early brain growth in Homo erectus and implications for cognitive ability. Nature. 2004;431:299–302. http://dx.doi.org/10.1038/nature02852, PMid:15372030

Hublin JJ, Coqueugniot H. Absolute or proportional brain size: That is the question. J Hum Evol. 2006;50:109–113. http://dx.doi.org/10.1016/j.jhevol.2005.08.009

Leigh, SR. Brain ontogeny and life history in Homo erectus. J Hum Evol. 2006;50:104–108. http://dx.doi.org/10.1016/j.jhevol.2005.02.008, PMid:16226296

DeSilva J, Lesnik J. Chimpanzee neonatal brain size: Implications for brain growth in Homo erectus. J Hum Evol. 2006;51:207–212. http://dx.doi.org/10.1016/j.jhevol.2006.05.006, PMid:16824583

Zollikofer CPE, Ponce de León MS. The evolution of hominin ontogenies. Sem Cell Dev Biol. 2010;21:441–452. http://dx.doi.org/10.1016/j.semcdb.2009.10.012

Antón SC. Developmental age and taxonomic affinity of the Mojokerto child, Java, Indonesia. Am J Phys Anthropol. 1997;102:497–504. http://dx.doi.org/10.1002/(SICI)1096-8644(199704)102:4<497::AID-AJPA6>3.0.CO;2-P

Lieberman DE, Pearson OM, Mowbray KM. Basicranial influence on overall cranial shape. J Hum Evol. 2000;38:291–315. http://dx.doi.org/10.1006/jhev.1999.0335, PMid:10656780

Ruff CB, Trinkaus E, Holliday TW. Body mass and encephalization in Pleistocene Homo. Nature. 1997;387:173–176. http://dx.doi.org/10.1038/387173a0, PMid:9144286

Rosenberg KR, Lu Z, Ruff CB. Body size, body proportions and encephalization in the Jinniushan specimen (abstract). Am J Phys Anthropol. 1999;28:235.

Rightmire GP. Brain size and encephalization in early to mid-Pleistocene Homo. Am J Phys Anthropol. 2004;124:109–123. http://dx.doi.org/10.1002/ajpa.10346, PMid:15160365

Antón S. Evolutionary significance of cranial variation in Asian Homo erectus. Am J Phys Anthropol. 2002;118:301–323. http://dx.doi.org/10.1002/ajpa.10091, PMid:12124912

Rightmire GP. The relationship of Homo erectus to later Middle Pleistocene hominids. Cour Forsch-Inst Senckenberg. 1994;171:319–326.

Antón SC. Natural history of Homo erectus. Yearb Phys Anthropol. 2003;46:126–169.

Lieberman DL, Krovitz GE, McBratney-Owen B. Testing hypotheses about tinkering in the fossil record: The case of the human skull. J Exp Zool (Mol Dev Evol). 2004;302B:284–301. http://dx.doi.org/10.1002/jez.b.21004, PMid:15211687

Day MH, Stringer CB. A reconsideration of the Omo Kibish remains and the erectus-sapiens transition. In: De Lumley MA, editor. [Homo erectus and the place of Tautavel man among the fossil hominids]. Nice: CNRS, 1982; p. 814–846. French.

Lieberman DE, McBratney BM, Krovitz G. The evolution and development of cranial form in Homo sapiens. Proc Natl Acad Sci USA. 2002;99:1134–1139. http://dx.doi.org/10.1073/pnas.022440799, PMid:11805284

Pearson OM. Statistical and biological definitions of ‘anatomically modern' humans: Suggestions for a unified approach to modern morphology. Evol Anthropol. 2008;17:38–48. http://dx.doi.org/10.1002/evan.20155

Cheverud JM. Morphological integration in the saddle-back tamarin (Saguinus fuscicollis) cranium. Am Nat. 1995;145:63–89. http://dx.doi.org/10.1086/285728

Lieberman DE, Ross CF, Ravosa MJ. The primate cranial base: Ontogeny, function and integration. Yearb Phys Anthropol. 2000;43:117–169. http://dx.doi.org/10.1002/1096-8644(2000)43:31+<117::AID-AJPA5>3.3.CO;2-9

Rolian C, Willmore KE. Morphological integration at 50: patterns and processes of integration in biological anthropology. Evol Biol. 2009;39:1–4. http://dx.doi.org/10.1007/s11692-009-9052-0

Ackermann RR. Morphological integration and the interpretation of fossil hominin diversity. Evol Biol. 2009;36:149–156. http://dx.doi.org/10.1007/s11692-009-9050-2

Ackermann RR. Ontogenetic integration of the hominoid face. J Hum Evol. 2005;48:175–197. http://dx.doi.org/10.1016/j.jhevol.2004.11.001, PMid:15701530

Roseman CC, Weaver TD, Stringer CB. Do modern humans and Neandertals have different patterns of cranial integration? J Hum Evol. 2011;60:684–693. http://dx.doi.org/10.1016/j.jhevol.2010.04.010, PMid:21463884

Rosas A, Bermúdez de Castro JM. The Mauer mandible and the evolutionary significance of Homo heidelbergensis. Geobios. 1998;31:687–697. http://dx.doi.org/10.1016/S0016-6995(98)80055-7



Reader Comments

Before posting a comment, read our privacy policy.

Post a comment (login required)

Crossref Citations

No related citations found.