Research Articles

The first animals: ca. 760-million-year-old sponge-like fossils from Namibia

C. K. ‘Bob’ Brain, Anthony R. Prave, Karl-Heinz Hoffmann, Anthony E. Fallick, Andre Botha, Donald A. Herd, Craig Sturrock, Iain Young, Daniel J. Condon, Stuart G. Allison
South African Journal of Science | Vol 108, No 1/2 | a658 | DOI: https://doi.org/10.4102/sajs.v108i1/2.658 | © 2012 C. K. ‘Bob’ Brain, Anthony R. Prave, Karl-Heinz Hoffmann, Anthony E. Fallick, Andre Botha, Donald A. Herd, Craig Sturrock, Iain Young, Daniel J. Condon, Stuart G. Allison | This work is licensed under CC Attribution 4.0
Submitted: 09 March 2011 | Published: 18 January 2012

About the author(s)

C. K. ‘Bob’ Brain, Ditsong Museum, South Africa
Anthony R. Prave, University of St Andrews, United Kingdom
Karl-Heinz Hoffmann, Ministry of Mines and Energy, Namibia
Anthony E. Fallick, Scottish Universities Environmental Research Centre, United Kingdom
Andre Botha, University of Pretoria, South Africa
Donald A. Herd, University of St Andrews, United Kingdom
Craig Sturrock, University of Nottingham, United Kingdom
Iain Young, University of New England, Australia
Daniel J. Condon, NERC Isotope Geosciences Laboratory, United Kingdom
Stuart G. Allison, University of St Andrews, United Kingdom

Abstract

One of the most profound events in biospheric evolution was the emergence of animals, which is thought to have occurred some 600–650 Ma. Here we report on the discovery of phosphatised body fossils that we interpret as ancient sponge-like fossils and term them Otavia antiqua gen. et sp. nov. The fossils are found in Namibia in rocks that range in age between about 760 Ma and 550 Ma. This age places the advent of animals some 100 to 150 million years earlier than proposed, and prior to the extreme climatic changes and postulated stepwise increases in oxygen levels of Ediacaran time. These findings support the predictions based on genetic sequencing and inferences drawn from biomarkers that the first animals were sponges. Further, the deposition and burial of Otavia as sedimentary particles may have driven the large positive C-isotopic excursions and increases in oxygen levels that have been inferred for Neoproterozoic time.

Keywords

Cryogenian; Otavi Group; Nama Group; sponges; metazoans; Neoproterozoic

Metrics

Total abstract views: 6934
Total article views: 7752

References


Xiao S, Zhang Y, Knoll AH. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature. 1998;391(6667):553–558. http://dx.doi.org/10.1038/35318

Hagadorn JW, Xiao S, Donoghue PCJ, et al. Cellular and subcellular structure of Neoproterozoic animal embryos. Science. 2006;314(5797):291–294. http://dx.doi.org/10.1126/science.1133129, PMid:17038620

Yin L, Zhu M, Knoll AH, Yuan X, Zhang J, Hu J. Doushantuo embryos preserved inside diapause egg cysts. Nature. 2007;446(7136):661–663. http://dx.doi.org/10.1038/nature05682, PMid:17410174

Narbonne GM. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Ann Rev Earth Planet Sci. 2005;33:421–442. http://dx.doi.org/10.1146/annurev.earth.33.092203.122519

Jensen S, Gehling JG, Droser ML. Ediacaran-type fossils in Cambrian sediments. Nature. 1998;393(6685):567–569. http://dx.doi.org/10.1038/31215

Grotzinger J, Watters W, Knoll AH. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology. 2000;26(3):334–359. http://dx.doi.org/10.1666/0094-8373(2000)026<0334:CMITSR>2.0.CO;2

Amthor JE, Grotzinger JP, Schroeder S, et al. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology. 2003;31(5):431–434. http://dx.doi.org/10.1130/0091-7613(2003)031<0431:EOCANA>2.0.CO;2

Grotzinger JP, Bowring SA, Saylor BZ, Kaufman AJ. Biostratigraphic and geochronologic constraints on early animal evolution. Science. 1995;270(5236):598–604. http://dx.doi.org/10.1126/science.270.5236.598

Martin MW, Grazhdankin DV, Bowring SA, Evans DAD, Fedonkin MA, Kirschvink JL. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: Implications for metazoan evolution. Science. 2000;288(5467):841–845. http://dx.doi.org/10.1126/science.288.5467.841, PMid:10797002

Condon DJ, Maoyan Z, Bowring SA, Wei W, Aihua Y, Yugan J. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science. 2005;308(5718):95–98. http://dx.doi.org/10.1126/science.1107765, PMid:15731406

Seilacher S, Bose PK, Pflueger F. Triploblastic animals more than 1 billion years ago: Trace fossil evidence from India. Science. 1998;281(5386);80–83. http://dx.doi.org/10.1126/science.282.5386.80, PMid:9756480

Rasmussen B, Bengston S, Fletcher IR, McNaughton NJ. Discoidal impressions and trace-like fossils more than 1200 million years old. Science. 2002;296(5570);1112–1115. http://dx.doi.org/10.1126/science.1070166, PMid:12004128

Doolittle RF, Feng DF, Tsang S, Cho G, Little E. Determining divergence times of major kingdoms of living organisms with a protein clock. Science. 1996;271(5248);470–477. http://dx.doi.org/10.1126/science.271.5248.470, PMid:8560259

Wray GA, Levinton JS, Shapiro LH. Molecular evidence for deep Precambrian divergence among metazoan phyla. Science. 1996;274(5287):568–573. http://dx.doi.org/10.1126/science.274.5287.568

Peterson KJ, Butterfield NJ. Origin of the Eumetazoa: Testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proc Natl Acad Sci USA. 2005;102(27):9547–9552. http://dx.doi.org/10.1073/pnas.0503660102, PMid:15983372, PMCid:1172262

Maloof AC, Rose CV, Beach R, et al. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nat Geosci. 2010;3(9):653–659. http://dx.doi.org/10.1038/ngeo934

Li CW, Chen JY, Hua TE. Precambrian sponges with cellular structures. Science. 1998;279(5352):879–882. http://dx.doi.org/10.1126/science.279.5352.879, PMid:9452391

Brasier MD, Green O, Shields G. Ediacaran sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna. Geology. 1997;25(4):303– 306. http://dx.doi.org/10.1130/0091-7613(1997)025<0303:ESSCFS>2.3.CO;2

Gehling JG, Rigby JK. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. J Palaeont. 1996;70(2):185–195.

Wood RA, Grotzinger JP, Dickson JAD. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science. 2002;296(5577):2383–2386. http://dx.doi.org/10.1126/science.1071599, PMid:12089440

Love GD, Grosjean E, Stalvies C, et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian. Nature. 2009;457(7230):718–723. http://dx.doi.org/10.1038/nature07673, PMid:19194449

Halverson GP, Hoffman PF, Schrag DP, Maloof AC, Rice AHN. Toward a Neoproterozoic composite carbon-isotope record. Geol Soc Amer Bull. 2005;117(9):1181–1207. http://dx.doi.org/10.1130/B25630.1

Knauth LP, Kennedy MJ. The late Precambrian greening of the Earth. Nature. 2009;460(7256):728–732. PMid:19587681

Derry LA. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth Planet Sci Lett. 2010;294(1–2):152–162. http://dx.doi.org/10.1016/j.epsl.2010.03.022

Brain CK, Hoffmann K-H, Prave AR, Fallick AE, Coetzee J, Botha AJ. Interpretive problems in a search for micro-invertebrate fossils from a Neoproterozoic limestone in Namibia. Palaeontologia Africana. 2001;37(1–12):1–12.

Aitchison J, Brown JAC. The lognormal distribution. Cambridge: Cambridge University Press; 1957.

Fallick AE, Pillinger CT, Stephenson A, Housley RM. Concerning the size distribution of ultrafine iron in lunar soil. Abstracts of papers presented to the Fourteenth Lunar and Planetary Science Conference. 1983;14:185–186.

Javaux EJ, Marshall CP, Bekker A. Organic walled microfossils in 3.2 billion year old shallow-marine siliciclastic deposits. Nature. 2010;463(7283):934–938. http://dx.doi.org/10.1038/nature08793, PMid:20139963

Hoffmann K-H, Condon DJ, Bowring SA, Crowley JL. U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation. Geology. 2004;32(9):817–820. http://dx.doi.org/10.1130/G20519.1

Bosak T, Lahr DJG, Pruss SB, Macdonald FM, Dalton L, Matys E. Agglutinated tests in post-Sturtian cap carbonates of Namibia and Mongolia. Earth Planet Sci Lett. 2011;308(1–2):29–40. http://dx.doi.org/10.1016/j.epsl.2011.05.030

Rothman DH, Hayes JM, Summons RE. Dynamics of the Neoproterozoic carbon cycle. Proc Nat Acad Sci USA. 2003;100(14):8124–8129. http://dx.doi.org/10.1073/pnas.0832439100, PMid:12824461, PMCid:166193

Hoffman PF, Schrag DP. The snowball Earth hypothesis; testing the limits of global change. Terra Nova. 2002;14(3):129–155. http://dx.doi.org/10.1046/j.13653121.2002.00408.x

Fike DA, Grotzinger JP, Pratt LM, Summons RE. Oxidation of the Ediacaran Ocean. Nature. 2006;444(7120):744–747. http://dx.doi.org/10.1038/nature05345, PMid:17151665

Canfield DE, Poulton SW, Narbonne GM. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science. 2007;315(5808):92–95. http://dx.doi.org/10.1126/science.1135013, PMid:17158290



Reader Comments

Before posting a comment, read our privacy policy.

Post a comment (login required)

 

Crossref Citations

1. Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian eukaryotes?
P. F. Hoffman
Geobiology  vol: 14  issue: 6  first page: 531  year: 2016  
doi: 10.1111/gbi.12191