Research Articles

Observations of a middle atmosphere thermal structure over Durban using a ground-based Rayleigh LIDAR and satellite data

Nkanyiso Mbatha, Venkataraman Sivakumar, Hassan Bencherif, Sandile B. Malinga, Sadhasivan R. Pillay, Ashokabose Moorgawa, Max M. Michaelis
South African Journal of Science | Vol 108, No 1/2 | a612 | DOI: https://doi.org/10.4102/sajs.v108i1/2.612 | © 2012 Nkanyiso Mbatha, Venkataraman Sivakumar, Hassan Bencherif, Sandile B. Malinga, Sadhasivan R. Pillay, Ashokabose Moorgawa, Max M. Michaelis | This work is licensed under CC Attribution 4.0
Submitted: 27 January 2011 | Published: 12 January 2012

About the author(s)

Nkanyiso Mbatha, University of KwaZulu-Natal, South Africa
Venkataraman Sivakumar, University of KwaZulu-Natal, South Africa
Hassan Bencherif, Université de La Réunion, France
Sandile B. Malinga, South African National Space Agency (SANSA) Space Science, South Africa
Sadhasivan R. Pillay, University of KwaZulu-Natal, South Africa
Ashokabose Moorgawa, University of KwaZulu-Natal, South Africa
Max M. Michaelis, University of KwaZulu-Natal, South Africa

Abstract

Studying the middle atmospheric thermal structure over southern Africa is an important activity to improve the understanding of atmospheric dynamics of this region. Observations of a middle atmosphere thermal structure over Durban, South Africa (29.9°S, 31.0°E) using the Durban Rayleigh Light Detection and Ranging (LIDAR) data collected over 277 nights from April 1999 to July 2004, including closest overpasses of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and Halogen Occultation Experiments (HALOE) satellites, are presented in this paper. There seems to be good agreement between the LIDAR and satellite observations. During autumn and winter, the temperatures measured by the LIDAR in the height region between 40 km and 55 km were 5 K to 12 K higher than those measured by the satellites. The data from the LIDAR instrument and the SABER and HALOE satellites exhibited the presence of an annual oscillation in the stratosphere, whereas in the mesosphere, semi-annual oscillations dominated the annual oscillation at some levels. The stratopause was observed in the height range of ~40 km – 55 km by all the instruments, with the stratopause temperatures measured as 260 K – 270 K by the LIDAR, 250 K – 260 K by the SABER and 250 K – 270 K by the HALOE. Data from the SABER and HALOE satellites indicated almost the same thermal structure for the middle atmosphere over Durban.

Keywords

LIDAR; temperature; middle atmosphere; stratosphere; satellite

Metrics

Total abstract views: 1655
Total article views: 2403

References


Singh UN, Keckhut P, McGee TJ, et al. Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign. J Geophys Res. 1996;101(10):287–297.

Schmidlin FJ. Repeatability and measurement uncertainty of United States meteorological rocketsondes. J Geophys Res. 1981;86:9599–9603. http://dx.doi.org/10.1029/JC086iC10p09599

Kent GS, Wright RW. A review of laser radar measurements of atmospheric properties. J Atmos Terr Phys. 1970;32:917–943. http://dx.doi.org/10.1016/0021-9169(70)90036-X

Hauchecorne A, Chanin M-L. Density and temperature profiles obtained by lidar between 35 and 70 km. Geophys Res Lett. 1980;7:565–568. http://dx.doi.org/10.1029/GL007i008p00565

Hauchecorne A, Chanin M-L. Mid-latitude lidar observations of planetary waves in the middle atmosphere during the winter of 1981–1982. J Geophys Res. 1983;88:3843–3849. http://dx.doi.org/10.1029/JC088iC06p03843

Chanin M-L, Hauchecorne A. Lidar study of the structure and dynamics of the middle atmosphere. Indian J Radio Space Phys. 1991;20:1–11.

Whiteway JA, Carswell AI. Rayleigh lidar observations of thermal structure and gravity wave activity in the high Arctic during a stratospheric warming. J Atmos Sci. 1994;51:3122-3136. http://dx.doi.org/10.1175/1520-0469(1994)051<3122:RLOOTS>2.0.CO;2

Leblanc T, McDermid IS, Hauchecorne A, Keckhut P. Evaluation of optimization of lidar temperature analysis algorithms using simulated data. J Geophys Res. 1998;103:6177–6187. http://dx.doi.org/10.1029/97JD03494

Sivakumar V, Rao PB, Krishnaiah M. Lidar measurements of the stratosphere-mesosphere thermal stracture at a low latitude: Comparisons with satellite. J Geophys Res. 2003;108(D11):4342. http://dx.doi.org/10.1029/2002JD003029

Labitzke K. Climatology of the stratosphere and mesosphere. Philos Trans R Soc London Ser A. 1980;296:7–18.

Wang PH, McCormick MP, Chu WP, et al. SAGE II stratospheric density and temperature retrieval experiment. J Geophys Res. 1992;97:843–863.

Namboothiri SP, Sugimoto N, Nakane H, Matsui I, Murayama Y. Rayleigh lidar observations of temperature over Tsukuba: Winter thermal structure and comparison studies. Earth Planets Space. 1999;51:825–832.

Chang QH, Yang GT, Gong SS. Lidar observations of the middle atmospheric temperature characteristics over Wuhan in China. J Atmos Sol Terr Phys. 2005;67:605–610. http://dx.doi.org/10.1016/j.jastp.2005.01.001

Argall PS, Sica RJ. A comparison of Rayleigh and sodium lidar temperature climatologies. Ann Geophys. 2007;25:27–35. http://dx.doi.org/10.5194/angeo-25-27-2007

Hauchecorne A, Chanin M-L, Keckhut P. Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar over the south of France. J Geophys Res. 1991;96:15297–15309.

Li T, Leblanc T, McDermid IS. Interannual variations of middle atmospheric temperature as measured by the JPL lidar at Mauna Loa Observatory, Hawaii (19.5 N, 155.6 W). J Geophys Res. 2008;113:D14109. http://dx.doi.org/1029/2007JD009764

Clancy RT, Rusch DW, Callan MT. Temperature minima in the average thermal structure of the middle atmosphere (70-80 km) from analysis of 40- to 92 km SME global temperature profiles. J Geophys Res. 1994;99:19001–19020. http://dx.doi.org/10.1029/94JD01681

Xu J, She CY, Yuan W, Mertens C, Mlynczak M, Russell J. Comparison between the temperature measurements by TIMED/SABER and lidar in the midlatitude. J Geophys Res. 2006;111:A10S09. http://dx.doi.org/1029/2005JA011439

Dou X, Li T, Xu J, et al. Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations. J Geophys Res. 2009;114:D20103. http://dx.doi.org/10.1029/2008JD011654

Moorgawa A, Bencherif H, Michaelis MM, Porteneuve J, Malinga S. The Durban LIDAR. Opt Laser Technol. 2007;39:306–312. http://dx.doi.org/10.1016/j.optlastec.2005.07.014

Bencherif H, Portafaix T, Baray JL, et al. LIDAR observations of lower stratospheric aerosols over South Africa linked to large scale transport across the southern subtropical barrier. J Atmos Sol Terr Phys. 2003;65:707–715. http://dx.doi.org/10.1016/S1364-6826(03)00006-3

Bencherif H, Morel B, Moorgawa A, et al. First validation of stratospheric temperature profiles obtained by a Rayleigh LIDAR over Durban, South Africa. S Afr J Sci. 2000;96:487–492.

Hervig ME, Russell III JM, Gordley LL, et al. Validation of temperature measurements from the Halogen Occultation Experiment. J Geophys Res. 1996;101(D6):10277–10285. http://dx.doi.org/10.1029/95JD01713

Remsberg E, Deaver L, Wells J, et al. An assessment of the quality of Halogen Occultation Experiment temperature profiles in the mesosphere based on comparisons with Rayleigh backscatter lidar and inflatable falling sphere measurements. J Geophys Res. 2002;107(D20):4447. http://dx.doi.org/10.1029/2001JD001521

Russell III JM, Gordley LL, Park JH, et al. The Halogen Occultation Experiment. J Geophys Res. 1993;98(D6)10777–10797. http://dx.doi.org/10.1029/93JD00799

Remsberg E, Lingenfelser G, Harvey VL, et al. On the verification of the quality of SABER temperature, geopotential height, and wind fields by comparison with Met Office assimilated analyses. J Geophys Res. 2003;108(D20):4628. http://dx.doi.org/10.1029/2003JD003720

Chandra H, Sharma S, Acharya YB, Jayaraman A. A Rayleigh lidar study of the atmospheric temperature structure over Mt. Abu, India. J Ind GeophysUnion. 2005;9:270–298.

Gobbi GP, Souprayen C, Congeduti F, et al. Lidar observations of middle atmosphere temperature variability. Ann Geophy. 1995;13:648–655. http://dx.doi.org/10.1007/s00585-995-0648-0

Batista PP, Clemesha BR, Simonich DM. A 14-year monthly climatology and trend in the 35–65 km altitude range from Rayleigh Lidar temperature measurements at a low latitude station. J Atmos Sol Terr Phys. 2009;71:1456–1462. http://dx.doi.org/10.1016/j.jastp.2008.03.005

Leblanc T, Hauchecorne A, Chanin ML, Taylor FW, Rodgers CD, Livesey N. Mesospheric temperature inversions as seen by ISAMS (UARS). Geophys Res Lett. 1995;22:1485–1488. http://dx.doi.org/10.1029/94GL03274

Chanin ML, Hauchecorne A. Lidar observation of gravity and tidal waves in the stratosphere and mesosphere. J Geophys Res. 1981;86:9715–9721. http://dx.doi.org/10.1029/JC086iC10p09715

Sivakumar V, Vishnu Prasanth P, Kishore P, Bencherif H, Keckhut P. Rayleigh LIDAR and satellite (HALOE, SABER, GPS-CHAMP and COSMIC) measurements of stratosphere-mesosphere temperature over a southern sub-tropical site, Reunion (20.8°S; 55.5°E): Climatology and comparison study. Ann Geophys. 2011;29:649–662. http://dx.doi.org/10.5194/angeo-29-649-2011

Randel W, Udelhofen P, Fleming E, et al. The SPARC intercomparison of middle-atmosphere climatologies. J Climate. 2004;17:986–1003. http://dx.doi.org/10.1175/1520-0442(2004)017<0986:TSIOMC>2.0.CO;2



Reader Comments

Before posting a comment, read our privacy policy.

Post a comment (login required)

Crossref Citations

No related citations found.