Research Articles

First fungal genome sequence from Africa: A preliminary analysis

Brenda D. Wingfield, Emma T. Steenkamp, Quentin C. Santana, Martin P.A. Coetzee, Stefan Bam, Irene Barnes, Chrizelle W. Beukes, Wai Yin Chan, Lieschen de Vos, Gerda Fourie, Melanie Friend, Thomas R. Gordon, Darryl A. Herron, Carson Holt, Ian Korf, Marija Kvas, Simon H. Martin, X. Osmond Mlonyeni, Kershney Naidoo, Mmatshepho M. Phasha, Alisa Postma, Oleg Reva, Heidi Roos, Melissa Simpson, Stephanie Slinski, Bernard Slippers, Rene Sutherland, Nicolaas A. van der Merwe, Magriet A. van der Nest, Stephanus N. Venter, Pieter M. Wilken, Mark Yandell, Renate Zipfel, Mike J. Wingfield
South African Journal of Science | Vol 108, No 1/2 | a537 | DOI: https://doi.org/10.4102/sajs.v108i1/2.537 | © 2012 Brenda D. Wingfield, Emma T. Steenkamp, Quentin C. Santana, Martin P.A. Coetzee, Stefan Bam, Irene Barnes, Chrizelle W. Beukes, Wai Yin Chan, Lieschen de Vos, Gerda Fourie, Melanie Friend, Thomas R. Gordon, Darryl A. Herron, Carson Holt, Ian Korf, Marija Kvas, Simon H. Martin, X. Osmond Mlonyeni, Kershney Naidoo, Mmatshepho M. Phasha, Alisa Postma, Oleg Reva, Heidi Roos, Melissa Simpson, Stephanie Slinski, Bernard Slippers, Rene Sutherland, Nicolaas A. van der Merwe, Magriet A. van der Nest, Stephanus N. Venter, Pieter M. Wilken, Mark Yandell, Renate Zipfel, Mike J. Wingfield | This work is licensed under CC Attribution 4.0
Submitted: 29 November 2010 | Published: 25 January 2012

About the author(s)

Brenda D. Wingfield, University of Pretoria, South Africa
Emma T. Steenkamp, University of Pretoria, South Africa
Quentin C. Santana, University of Pretoria, South Africa
Martin P.A. Coetzee, University of Pretoria, South Africa
Stefan Bam, University of Pretoria, South Africa
Irene Barnes, University of Pretoria, South Africa
Chrizelle W. Beukes, University of Pretoria, South Africa
Wai Yin Chan, University of Pretoria, South Africa
Lieschen de Vos, University of Pretoria, South Africa
Gerda Fourie, University of Pretoria, South Africa
Melanie Friend, University of Pretoria, South Africa
Thomas R. Gordon, University of California, United States
Darryl A. Herron, University of Pretoria, South Africa
Carson Holt, University of Utah, United States
Ian Korf, University of California, United States
Marija Kvas, University of Pretoria, South Africa
Simon H. Martin, University of Pretoria, South Africa
X. Osmond Mlonyeni, University of Pretoria, South Africa
Kershney Naidoo, University of Pretoria, South Africa
Mmatshepho M. Phasha, University of Pretoria, South Africa
Alisa Postma, University of Pretoria, South Africa
Oleg Reva, University of Pretoria, South Africa
Heidi Roos, University of Pretoria, South Africa
Melissa Simpson, University of Pretoria, South Africa
Stephanie Slinski, University of California, United States
Bernard Slippers, University of Pretoria, South Africa
Rene Sutherland, University of Pretoria, South Africa
Nicolaas A. van der Merwe, University of Pretoria, South Africa
Magriet A. van der Nest, University of Pretoria, South Africa
Stephanus N. Venter, University of Pretoria, South Africa
Pieter M. Wilken, University of Pretoria, South Africa
Mark Yandell, University of Utah, United States
Renate Zipfel, University of Pretoria, South Africa
Mike J. Wingfield, University of Pretoria, South Africa

Abstract

Some of the most significant breakthroughs in the biological sciences this century will emerge from the development of next generation sequencing technologies. The ease of availability of DNA sequence made possible through these new technologies has given researchers opportunities to study organisms in a manner that was not possible with Sanger sequencing. Scientists will, therefore, need to embrace genomics, as well as develop and nurture the human capacity to sequence genomes and utilise the ’tsunami‘ of data that emerge from genome sequencing. In response to these challenges, we sequenced the genome of Fusarium circinatum, a fungal pathogen of pine that causes pitch canker, a disease of great concern to the South African forestry industry. The sequencing work was conducted in South Africa, making F. circinatum the first eukaryotic organism for which the complete genome has been sequenced locally. Here we report on the process that was followed to sequence, assemble and perform a preliminary characterisation of the genome. Furthermore, details of the computer annotation and manual curation of this genome are presented. The F. circinatum genome was found to be nearly 44 million bases in size, which is similar to that of four other Fusarium genomes that have been sequenced elsewhere. The genome contains just over 15 000 open reading frames, which is less than that of the related species, Fusarium oxysporum, but more than that for Fusarium verticillioides. Amongst the various putative gene clusters identified in F. circinatum, those encoding the secondary metabolites fumosin and fusarin appeared to harbour evidence of gene translocation. It is anticipated that similar comparisons of other loci will provide insights into the genetic basis for pathogenicity of the pitch canker pathogen. Perhaps more importantly, this project has engaged a relatively large group of scientists including students in a significant genome project that is certain to provide a platform for growth in this important area of research in the future.

Keywords

genome; Fusarium circinatum; annotation; MAT genes; fusarin; mycotoxin

Metrics

Total abstract views: 1984
Total article views: 3645

References


Wingfield MJ, Hammerbacher A, Ganley RJ, et al. Pitch canker caused by Fusarium circinatum: A growing threat to pine plantations and forests worldwide. Australas Plant Pathol. 2008;37:319–334. http://dx.doi.org/10.1071/AP08036

Viljoen A, Wingfield MJ, Marasas WFO. First report of Fusarium subglutinans f.sp. pini on pine seedlings in South Africa. Plant Dis. 1994;78:309–312. http://dx.doi.org/10.1094/PD-78-0309

Wingfield MJ, Coutinho TA, Roux J, Wingfield BD. The future of exotic plantation forestry in the tropics and southern hemisphere. Lessons from pitchcanker. S Afr Forest J. 2002;195:79–82.

Coutinho TA, Steenkamp ET, Mongwaketsi K, Wilmot M, Wingfield MJ. First outbreak of pitch canker in a South African pine plantation. Australas Plant Pathol. 2007;36:256–261. http://dx.doi.org/10.1071/AP07017

Mitchell RG, Wingfield MJ, Steenkamp ET, Coutinho TA. An account of Fusarium circinatum, the causal agent of the disease pitch canker on pines, with reference to Pinus patula in South Africa. South Forests. 2011;73:1–3.

Steenkamp ET, Wingfield BD, Coutinho TA, Wingfield MJ, Marasas WFO. Distinguishing Fusarium subglutinans f.sp. pini from other closely relatedisolates of F. subglutinans based on histone gene sequence. Appl Environ Microbiol. 1999;65:3401–3406.

Schweigkofler W, O'Donnell K, Garbelotto M. Detection and quantification of airborne conidia of Fusarium circinatum, the causal agent of pine pitch canker, from two California sites by using a real-time PCR approach combined with a simple spore trapping method. Appl Environ Microbiol. 2004;70:3512–3520. http://dx.doi.org/10.1128/AEM.70.6.3512-3520.2004, PMid:15184151

Britz H, Coutinho TA, Wingfield MJ, Marasas WFO, Gordon TR, Leslie JF. Fusarium subglutinans f. sp. pini represents a distinct mating population in theGibberella fujikuroi species complex. Appl Environ Microbiol. 1999;65:1198–1201. PMid:10049883

Santana QC, Coetzee MPA, Steenkamp ET, et al. Microsatellite discovery by deep sequencing of enriched genomic libraries. Biotechniques. 2009;46:217–223. http://dx.doi.org/10.2144/000113085, PMid:19317665

Wikler K, Gordon TR. An initial assessment of genetic relationships among populations of Fusarium circinatum in different parts of the world. Can J Bot. 2000;78:709–717. http://dx.doi.org/10.1139/b00-044

Britz H, Coutinho TA, Wingfield BD, Marasas WFO, Wingfield MJ. Diversity and differentiation in two populations of Gibberella circinata in South Africa. Plant Pathol. 2005;54:46–52. http://dx.doi.org/10.1111/j.1365-3059.2005.01108.x

Perez-Sierra A, Landeras E, Leon M, Berbegal M, Garcia-Jimenez J, Armengol J. Characterization of Fusarium circinatum from Pinus spp. in northern Spain. Mycol Res. 2007;111:832–839. http://dx.doi.org/10.1016/j.mycres.2007.05.009, PMid:17662589

Wikler K, Gordon TR, Clark SL, Wingfield MJ, Britz H. Potential for outcrossing in an apparently asexual population of Fusarium circinatum, the casual agent of pitch canker disease. Mycologia. 2000;92:1085–1090. http://dx.doi.org/10.2307/3761476

Okuda Y, Murakami S, Matsumoto T. A genetic linkage map of Pleurotus pulmonarius based on AFLP markers, and localization of the gene region for the sporeless mutation. Genome. 2009;52:438–446. http://dx.doi.org/10.1139/G09-021, PMid:19448724

Martin F, Selosse MA. Prof. Dr Gopi Krishna Podila, 1957-2010 Obituary. New Phytol. 2010;186:296–297. http://dx.doi.org/10.1111/j.1469-8137.2010.03250.x

Soanes DM, Alam I, Cornell M, et al. Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS ONE. 2008;3:e2300. http://dx.doi.org/10.1371/journal.pone.0002300, PMid:18523684

Sharpton TJ, Stajich JE, Rounsley SD, et al. Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res. 2009;19:1722–1731. http://dx.doi.org/10.1101/gr.087551.108, PMid:19717792

Cuomo CA, Güeldener U, Xu JR, et al. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science. 2007;317:1400–1402. http://dx.doi.org/10.1126/science.1143708, PMid:17823352

Ma LJ, Van der Does HC, Borkovich KA, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature. 2010;464:367–373. http://dx.doi.org/10.1038/nature08850, PMid:20237561

De Vos L, Myburg AA, Wingfield MJ, Desjardins AE, Gordon TR, Wingfield BD. Complete genetic linkage maps from an interspecific cross between Fusarium circinatum and Fusarium subglutinans. Fungal Genet Biol. 2007;44:701–714. http://dx.doi.org/10.1016/j.fgb.2007.02.007

Chaverri P, Salgado C, Hirooka Y, Rossman AY, Samuels GJ. Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Stud Mycol. 2011;68:57–78. http://dx.doi.org/10.3114/sim.2011.68.03, PMid:21523189

Geiser DM, Lewis Ivey ML, Hakiza G, Juba JH, Miller SA. Gibberella xylarioides (anamorph: Fusarium xylarioides), a causative agent of coffee wilt disease in Africa, is a previously unrecognized member of the G. fujikuroi complex. Mycologia. 2005;97:191–201. http://dx.doi.org/10.3852/mycologia.97.1.191, PMid:16389971

Moller EM, Bahnwegg G, Sandermann H, Gieger HH. A simpler and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies and infected plant tissue. Nucleic Acids Res. 1992;20:6115–6116. http://dx.doi.org/10.1093/nar/20.22.6115

454 Sequencing home page [homepage on the Internet]. No date [cited 2010 Nov 28]. Available from: http://www.454.com

Broad Institute of Harvard and MIT. Fusarium Comparative Sequencing Project [homepage on the Internet]. No date [cited 2010 Nov 28]. Available from: http://www.broadinstitute.org

Steenkamp ET, Coutinho TA, Desjardins AE, Wingfield BD, Marasas WFO, Wingfield MJ. Gibberella fujikuroi population E associated with maize and teosinte. Mol Plant Pathol. 2001;2:215–221. http://dx.doi.org/10.1046/j.1464-6722.2001.00072.x, PMid:20573009

Yun SH, Arie T, Kaneko I, Yoder OD, Turgeon BG. Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. Fungal Genet Biol. 2000;31:7–20. http://dx.doi.org/10.1006/fgbi.2000.1226, PMid:11118131

Parra G, Bradnam K, Korf I. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23:1061–1067. http://dx.doi.org/10.1093/bioinformatics/btm071, PMid:17332020

Cantarel B, Korf I, Robb SMC, et al. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008;18:188–196. http://dx.doi.org/10.1101/gr.6743907, PMid:18025269

Vardges T-H, Lomsadze A, Chernoff YO, Borodovsky M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res. 2008;18:1979–1990. http://dx.doi.org/10.1101/gr.081612.108, PMid:18757608

Stanke M, Morgenstern B. AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005;33:W465-W467. http://dx.doi.org/10.1093/nar/gki458, PMid:15980513

Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004,5:59. http://dx.doi.org/10.1186/1471-2105-5-59, PMid:15144565

Brenner SE. Errors in genome annotation. Trends Genet. 1999,15:132–133. http://dx.doi.org/10.1016/S0168-9525(99)01706-0

Devos D, Valencia A. Intrinsic errors in genome annotation. Trends Genet. 2001;17:429–431. http://dx.doi.org/10.1016/S0168-9525(01)02348-4

Lewis SE, Searle SMJ, Harris N, et al. Apollo: A sequence annotation editor. Genome Biol. 2002;3:research0082–0082.14.

Salamov AA, Solovyev VV. Ab initio gene finding in Drosophila genomic DNA. Genome Res. 2000;10:516–522. http://dx.doi.org/10.1101/gr.10.4.516, PMid:10779491

Marasas WFO, Nelson PE, Toussoun TA. Toxigenic Fusarium species: Identity and mycotoxicology. University Park, PA: Pennsylvania State University Press;1984.

Desjardins AE, Proctor RH. Molecular biology of Fusarium mycotoxins. Int J Food Microbiol. 2007;119:47–50. http://dx.doi.org/10.1016/j.ijfoodmicro.2007.07.024, PMid:17707105

Desjardins AE. Gibberella from A(venaceae) to Z(eae). Annu Rev Phytopathol. 2003;41:177–198. http://dx.doi.org/10.1146/annurev.phyto.41.011703.115501, PMid:1265196

Proctor RH, Plattner RD, Brown DW, Seo J-A, Lee Y-W. Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol Res. 2004;108:815–822. http://dx.doi.org/10.1017/S0953756204000577, PMid:15446715

Proctor RH, Busman M, Seo J-A, Lee Y-W, Plattner RD. Fumonisin biosynthetic gene cluster in Fusarium oxysporum strain O-1890 and the genetic basis for B versus C fumonisin production. Fungal Genet Biol. 2008;45:1016–1026. http://dx.doi.org/10.1016/j.fgb.2008.02.004, PMid:18375156

Liu HQ, Fu YP, Jiang DH, et al. Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes. J Virol. 2010;84:11876–11887. http://dx.doi.org/10.1128/JVI.00955-10, PMid:20810725

Liolios K, Chen IM, Mavromatis K, et al. The genomes online database (GOLD) in 2009: Status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res. 2010;38:D346–D354. http://dx.doi.org/10.1093/nar/gkp848, PMid:19914934



Reader Comments

Before posting a comment, read our privacy policy.

Post a comment (login required)

 

Crossref Citations

1. Association of the pitch canker pathogenFusarium circinatumwith grass hosts in commercial pine production areas of South Africa
Cassandra L Swett, Bernice Porter, Gerda Fourie, Emma T Steenkamp, Thomas R Gordon, Michael J Wingfield
Southern Forests: a Journal of Forest Science  vol: 76  issue: 3  first page: 161  year: 2014  
doi: 10.2989/20702620.2014.916087