Research Articles

Antidiabetic effects of Aloe ferox and Aloe greatheadii var. davyana leaf gel extracts in a low-dose streptozotocin diabetes rat model

Du Toit Loots, Marlien Pieters, Md Shahidul Islam, Lisa Botes
South African Journal of Science | Vol 107, No 7/8 | a532 | DOI: https://doi.org/10.4102/sajs.v107i7/8.532 | © 2011 Du Toit Loots, Marlien Pieters, Md Shahidul Islam, Lisa Botes | This work is licensed under CC Attribution 4.0
Submitted: 24 November 2010 | Published: 14 July 2011

About the author(s)

Du Toit Loots, Centre for Human Metabonomics, School for Physical and Chemical Sciences, North-West University, South Africa
Marlien Pieters, Centre of Excellence for Nutrition, North-West University, South Africa
Md Shahidul Islam, Centre of Excellence for Nutrition, North-West University, South Africa
Lisa Botes, Centre of Excellence for Nutrition, North-West University, South Africa

Abstract

The medicinal use and commercialisation of the plants Aloe ferox and Aloe greatheadii are primarily based on research done on Aloe vera and Aloe arborescens. Consequently, in this study we investigated the possible antidiabetic effects of ethanol extracts of A. ferox and A. greatheadii var. davyana leaf gel in a streptozotocin (STZ)-induced type 2 diabetes rat model. Fifty male Wistar rats, weighing 200 g – 250 g, were randomly divided into five groups of n = 10: normal control rats, diabetic control rats, diabetic rats receiving A. ferox leaf gel extract (300 mg/kg), diabetic rats receiving A. greatheadii leaf gel extract (300 mg/kg), and diabetic rats receiving glibenclamide (600 μg/kg). Diabetes was induced by a single intraperitoneal injection of STZ (40 mg/kg). Rats were sacrificed 5 weeks after injection, following a 12-hour fast, and blood and tissue samples were collected. Compared to the normal control group, STZ significantly increased relative liver and kidney weights, end-point plasma glucose, fructosamine, oxidative stress, liver enzymes, total cholesterol (TC), triglycerides, very low density lipoprotein-cholesterol and TC: high density lipoprotein-cholesterol (HDL-C) values and reduced serum insulin levels. Treatment with A. greatheadii moderately increased serum insulin and HDL-C levels and moderately reduced end-point plasma glucose and liver alkaline phosphatase (ALP) and significantly decreased TC:HDL-C ratios. A. ferox supplementation similarly resulted in moderately increased serum insulin, accompanied by slight corrections in ALP and HDL-C, without any change to end-point plasma glucose values. A. greatheadii and, to a lesser extent, A. ferox, resulted in a clinically relevant improved diabetic state (indicated by moderate to high effect sizes), suggesting that these Aloe species may show promise for treating diabetes.

Keywords

antidiabetic; Aloe ferox; Aloe greatheadii var. davyana; streptozotocin; diabetes

Metrics

Total abstract views: 1659
Total article views: 2761

References


Vasudevan AR, Garber AJ. Insulin resistance syndrome. A review. Minerva Endocrinol. 2005;30:101–119.

Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Atlas. 2010;87:4–14.

Murugesh K, Yeligar V, Dash DK, Sengupta P, Maiti BC, Maity TK. Antidiabetic, antioxidant and antihyperlipidemic status of Heliotropium zeylanicum extract on streptozotocin-induced diabetes in rats. Biol Pharm Bull. 2006;29:2202–2205. doi:10.1248/bpb.29.2202

Ducorps M, Ndong W, Jupkwo B, et al. Diabetes in Cameroon. Classification difficulties in Africa. Médecine tropicale: revue du Corps de santé colon. 1996;56:264–270.

Agarwal OP. Prevention of atheromatous heart disease. Angiology. 1985;36:485–492. doi:10.1177/000331978503600801, PMid:2864002

Beppu HT, Nagamura Y, Fujita K. Hypoglycemic and antidiabetic effects in mice of Aloe arborescens Miller var. natalensis Berger. Phytother Res. 1993;7:S37–S42. doi:10.1002/ptr.2650070713

Rajasekaran S, Sivagnaman K, Subramanian S. Antioxidant effect of Aloe vera gel extract in streptozotocin-induced diabetes in rats. Pharmacol Rep. 2005;57:90–96. PMid:15849382

Elliot RB, Wasmuth H, Hill J, Songini M, Bottazzo GF, Sardinian IDDM Study Group. Diabetes and cow’s milk. Lancet. 1996;348(9042):1657.

Botes L, Van Der Westhuizen FH, Loots DT. Phytochemical content and antioxidant capacities of two Aloe greatheadii var. davyana extracts. Molecules. 2008;13:2169–2180. doi:10.3390/molecules13092169, PMid:18830148

Loots DT, Van Der Westhuizen FH, Botes L. Aloe ferox leaf gel phytochemical content, antioxidant capacity, and possible health benefits. J Agric Food Chem. 2007;55:6891–6896. doi:10.1021/jf071110t, PMid:17661490

Rajasekaran S, Sivagnaman K, Subramanian S. Modulatory effects of Aloe vera leaf gel extract on oxidative stress in rats treated with streptozotocin. J Pharm Pharmacol. 2005;57:241–246. doi:10.1211/0022357055416, PMid:15720789

Szkudelski T. The mechanism of alloxan and streptozotocin action in b-cells of the rat pancreas. Physiol Res. 2001;50:536–546.

Portha B, Giroix MH, Kergoat M, Bailbe D, Blondel O, Serradas P. Animal models of non-insulin-dependent diabetes induced in the rat by experimental reduction of β cell mass. J Annu Diabetol Hotel Dieu. 1988:33–36.

Benzie IF, Strain JJ. Feric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15–27. doi:10.1016/S0076-6879(99)99005-5

Ellis SM, Steyn HS. Practical significance (effect sizes) versus or in combination with statistical significance (p-values). Manag Dyn. 2003;12:51–53.

Rosenthal R, Rosnow RL, Rubin DB. Contrasts and effect sizes in behavioural research: A correlational approach. Cambridge: Cambridge University Press; 2000.

Beppu HT, Koike K, Shimpo T, Chihara M, Hoshino CI, Kuzuya H. Radical-scavenging effects of Aloe arborescens Miller on prevention of pancreatic islet β-cell destruction in rats. J Ethnopharmacol. 2003;89:37–45. doi:10.1016/S0378-8741(03)00268-X

Islam MS, Loots DT. Experimental rodent models of type 2 diabetes: A review. Methods Find Exp Clin Pharmacol. 2009;31:249–261. doi:10.1358/mf.2009.31.4.1362513, PMid:19557203

Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes. 2005;54:1615–1625. doi:10.2337/diabetes.54.6.1615, PMid:15919781

Grove J, Daly AK, Bassendine MF, Day CP. Association of a tumor necrosis factor promoter polymorphism with susceptibility to alcoholic steatohepatitis. Hepatology. 1997;26:143–146. doi:10.1002/hep.510260119, PMid:9214463

Brownlee M. A radical explanation for glucose-induced β cell dysfunction. J Clin Invest. 2003;112:1788–1790. doi:10.1172/JCI20501, PMid:14679173, PMid:297003

Burcelin R, Eddouks M, Maury J, Kande J, Assan R, Girard J. Excessive glucose production, rather than insulin resistance, accounts for hyperglycemia in recent-onset streptozotocin-diabetic rats. Diabetologia. 1995;38:283–290. doi:10.1007/BF00400632, PMid:7758874

Garcia-Compean D, Jaquez-Quintan JO, Maldonado-Gaza H. Hepatogenous diabetes. Current reviews of an ancient problem. Ann Hepatol. 2009;8:13–20. PMid:19221528

Satriano J, Vallon V. Primary kidney growth and its consequences at the onset of diabetes mellitus. Amino Acids. 2006;31:1–9. doi:10.1007/s00726-006-0326-x, PMid:16733619

Valentovic MA, Alejandro N, Carpenter B, Brown A, Ramos K. Streptozotocin (STZ) diabetes enhances benzo(alpha)pyrene induced renal injury in Sprague Dawley rats. Toxicol Lett. 2006;164:214–220. doi:10.1016/j.toxlet.2005.12.009, PMid:16460892

Lugman W, Abdella N, Moro M. Serum fructosamine concentration as measure of blood glucose control in insulin dependent diabetes. Br Med J. 1985;290:1075–1076. doi:10.1136/bmj.290.6474.1075-a, PMid:3921112 PMid:1418361

Jiao S, Matsuzawa Y, Matsubara K, et al. Increased activity of intestinal acyl-CoA:cholesterol acyltransferase in rats with streptozotocin-induced diabetes and restoration with insulin supplementation. Diabetes. 1988;37:342–346. doi:10.2337/diabetes.37.3.342, PMid:2967215

Kusunoki J, Aragane K, Kitamine T, et al. Postprandial hyperlipidemia in streptozotocin-induced diabetic rats is due to abnormal increase in intestinal acyl coenzyme A:cholesterol acyltransferase activity. Arterioscler Thromb Vasc Biol. 2000;20:171–178. PMid:10634814

Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care. 2004;27:1496–1504. doi:10.2337/diacare.27.6.1496, PMid:15161808



Reader Comments

Before posting a comment, read our privacy policy.

Post a comment (login required)

 

Crossref Citations

1. The Potential Therapeutic Value of Medicinal Plants in the Management of Metabolic Disorders
Trevor T. Nyakudya, Thulani Tshabalala, Rachael Dangarembizi, Kennedy H. Erlwanger, Ashwell R. Ndhlala
Molecules  vol: 25  issue: 11  first page: 2669  year: 2020  
doi: 10.3390/molecules25112669