Research Articles

Caricain: A basis for enzyme therapy for coeliac disease

Hugh J. Cornell, Teodor Stelmasiak
South African Journal of Science | Vol 107, No 9/10 | a529 | DOI: https://doi.org/10.4102/sajs.v107i9/10.529 | © 2011 Hugh J. Cornell, Teodor Stelmasiak | This work is licensed under CC Attribution 4.0
Submitted: 23 November 2010 | Published: 12 September 2011

About the author(s)

Hugh J. Cornell, School of Applied Science, RMIT University, Australia
Teodor Stelmasiak, Glutagen Pty Ltd, Australia

Abstract

Gliadin, a glycoprotein present in wheat and other grass cereals, is a causative agent in coeliac disease. It is therefore important to find methods for the detoxification of gliadin. Lysosomal integrity is lost in patients with active coeliac disease but restored when gliadin is removed from the diet. We employed a rat liver lysosome assay to monitor the extent of detoxification of a gliadin digest by caricain, a protein enzyme found in papaya. Pre-incubating the gliadin digest for different durations with caricain allowed the kinetics of the detoxification process to be studied. A significant degree of protection (80%) of the lysosomes was achieved with 1.7% w/w of caricain on substrate after incubation for 2 h at 37 °C. The detoxification followed first-order kinetics with a rate constant of 1.7 x 10-4/s. The enzyme was strongly inhibited by imidazole, but weakly by phenylmethyl sulphonyl fluoride, as was also a caricain-enriched fraction from ion-exchange chromatography of papaya oleo-resin. The value of caricain in the detoxification of gliadin was confirmed in the present studies and this enzyme shows promise for enzyme therapy in coeliac disease.

Keywords

caricain; gliadin; coeliac disease; enzyme therapy; lysosomes

Metrics

Total abstract views: 1748
Total article views: 2426

References


Cornell HJ, Stelmasiak T. A unified hypothesis of coeliac disease with implications for management of patients. Amino Acids. 2007;33:43–49. doi:10.1007/s00726-006-0420-0, PMid:17013762

Bronstein HD, Haeffner LJ, Kowlessar OD. Enzymatic digestion of gliadin: The effect of the resultant peptides in adult coeliac disease. Clin Chim Acta. 1966;14:141–155. doi:10.1016/0009-8981(66)90080-5

Kocna P, Mothes T, Krchnak V, Fric P. Relationship between gliadin peptide structure and their effect on the fetal chick duodenum. Zeitschrift fur Lebensmitteluntersuchung und-Forschung. 1991;192:116–119. doi:10.1007/BF01202623

Cornell HJ, Mothes T. The activity of wheat gliadin peptides in in vitro assays for coeliac disease. Biochim Biophys Acta. 1993;1181:169–173. PMid:8481406

Cornell HJ, Macrae FA, Melny J, et al. Enzyme therapy for management of coeliac disease. Scand J Gastroent. 2005;40:1304-1312. doi:10.1080/00365520510023855, PMid:16243716

Cornell HJ, Doherty W, Stelmasiak T. Papaya latex enzymes capable of detoxification of gliadin. Amino Acids. 2010;38:155–165. doi:10.1007/s00726-008-0223-6, PMid:19156482

Dubey VK, Pande M, Singh BK, Jagannadham MV. Papain-like proteases: Applications of their inhibitors. Afr J Biotechnol. 2007;6:1077–1086.

Zerhouni S, Amrani A, Nijs M, et al. Purification and characterization of papaya glutamine cyclotransferase, a plant enzyme highly resistant to chemical, acid and thermal denaturation. Biochim Biophys Acta. 1998;1387:275–290. doi:10.1016/S0167-4838(98)00140-X

Azarkan M, El Moussaoui A, Van Wuytswinkel D, Dehon G, Looze Y. Fractionation and purification of the enzymes stored in the latex of Carica papaya. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;790:229–238. doi:10.1016/S1570-0232(03)00084-9

Riecken EO, Stewart JS, Booth CC, Pearse AGE. A histochemical study of the role of lysosomal enzymes in idiopathic steatorrhoea before and during a gluten- free diet. Gut. 1966;7:317–332. doi:10.1136/gut.7.4.317, PMid:591741, PMCid:1552434

Williams VR, Williams HB. Basic physical chemistry for the life sciences. San Francisco: WH Freeman and Company, 1973; p. 277–313.

Laidler KJ. Physical chemistry with biological applications. Menlo Park, CA: Benjamin Cummings, 1978; p. 427–451.

Cornell HJ, Townley RRW. Investigating possible intestinal peptidase deficiency in coeliac disease. Clin Chim Acta. 1973;43:113–125. doi:10.1016/00098981(73)90126-5

Terrell DA. The isolation of native glutaminyl cyclase from Saccharomyces cerevisiae. Honours thesis, San Marcos, Texas State University, 2006.

De Ritis G, Auricchio S, Jones HW, Lew EJ-L, Bernardin JE, Kasarda DD. In vitro (organ culture) studies of the toxicity of specific A-gliadin peptides in coeliac disease. Gastroenterology. 1988;94:41–47. PMid:3335296

Cornell HJ. The aetiology of coeliac disease and its significance for therapy. Curr Topics Peptide Protein Res. 2005;7:17–22.

Ensari A, Marsh MN, Moriarty KJ, Moore CM, Fido RJ, Tatham AS. Studies in vivo of w-gliadins in gluten sensitivity (coeliac sprue disease). Clin Sci. 1998;95:419–424. doi:10.1042/CS19980129, PMid:9748417

Cornell HJ, Rivett DE. In vitro mucosal digestion of synthetic gliadin-derived peptides in coeliac disease. J Protein Chem. 1995;14:335–339. doi:10.1007/BF01886790, PMid:8590601

Sturgess R, Day P, Ellis HJ, et al. Wheat peptide challenge in coeliac disease. Lancet. 1994;343:758–761. doi:10.1016/S0140-6736(94)91837-6

McLachlan A, Cullis PG, Cornell HJ. The use of extended motifs for focussing on toxic peptides in coeliac disease. J Biochem Mol Biol Biophys. 2002;6:319–324. doi:10.1080/1025814021000003238, PMid:12385967

Szwajcer-Dey E, Rasmussen J, Meldal M, Breddam K. Proline-specific endopeptidases from microbial sources: Isolation of an enzyme from Xanthomonas sp. JBacteriol. 1992;174:2454–2459. PMid:1556065, PMCid:205881

Matysiak-Budnik T, Candalh C, Cellier C, et al. Limited efficiency of prolyl-endopeptidase in the detoxification of gliadin peptides in coeliac disease. Gastroenterology. 2005;129:786–796. doi:10.1053/j.gastro.2005.06.016, PMid:16143118

Donlon J, Stevens FM. No lack of prolyl oligopeptidase (POP) in the coeliac mucosa. Proceedings of the 11th International Symposium on Coeliac Disease; 2004 April 28 – May 1; Belfast, Ireland. Belfast: The Coeliac Society of Ireland; 2004. p. 19. 24. Arnon R. The cysteine proteases: Papain. Methods Enzymol. 1970;19:226–244. doi:10.1016/0076-6879(70)19017-3

Messer M, Anderson CM, Hubbard L. Studies on the mechanism of destruction of the toxic action of wheat gluten in coeliac disease by crude papain. Gut. 1964;5:295–303. doi:10.1136/gut.5.4.295, PMid:14209911, PMCid:1413471

Stepniak D, Spaenij-Dekking L, Mitea C, et al. Highly efficient gluten degradation with a newly identified prolyl endopeptidase: Implications for coeliac disease. Am J Physiol Gastrointest Liver Physiol. 2006;291:G621–G629. doi:10.1152/ajpgi.00034.2006, PMid:16690904

Cornell HJ, Stelmasiak T. Commentary – Strategies for improved outcomes for those with coeliac disease. In: Edwards MA, editor. Coeliac disease – Etiology, diagnosis and treatment. New York: Nova Science, 2009; p. 207–211.



Reader Comments

Before posting a comment, read our privacy policy.

Post a comment (login required)

 

Crossref Citations

1. Relative Rates of Gluten Digestion by Nine Commercial Dietary Digestive Supplements
Gregory John Tanner
Frontiers in Nutrition  vol: 8  year: 2021  
doi: 10.3389/fnut.2021.784850