Research Articles

Synthesis of novel glycopolymer brushes via a combination of RAFT-mediated polymerisation and ATRP

Reda Fleet, Eric T.A. van den Dungen, Bert Klumperman
South African Journal of Science | Vol 107, No 3/4 | a424 | DOI: | © 2011 Reda Fleet, Eric T.A. van den Dungen, Bert Klumperman | This work is licensed under CC Attribution 4.0
Submitted: 30 August 2010 | Published: 22 March 2011

About the author(s)

Reda Fleet, University of Stellenbosch, South Africa
Eric T.A. van den Dungen, University of Stellenbosch, South Africa
Bert Klumperman, University of Stellenbosch, South Africa


Glycopolymers (synthetic sugar-containing polymers) have become increasingly attractive to polymer chemists because of their role as biomimetic analogues and their potential for commercial applications. Glycopolymers of different structures confer high hydrophilicity and water solubility and can therefore be used for specialised applications, such as artificial materials for a number of biological, pharmaceutical and biomedical uses. The synthesis and characterisation of a series of novel glycopolymer brushes, namely poly(2-(2-bromoisobutyryloxy) ethyl methacrylate)-g-poly(methyl 6-O-methacryloyl-α-D-glucoside (P(BIEM)-g-P(6-O-MMAGIc)), poly(2-(2-bromoisobutyryloxy) ethyl methacrylate-co-methyl methacrylate)-g-poly(methyl 6-O-methacryloyl-α-D-glucoside) P(BIEM-co-MMA)-g-P(6-O-MMAGIc), poly(2-(2-bromoisobutyryloxy) ethyl methacrylate-b-methyl methacrylate)-g-poly(methyl 6-O-methacryloyl-α-D-glucoside) P(BIEM-b-MMA)-g-P(6-O-MMAGIc) and poly(4-vinylbenzyl chloride-alt-maleic anhydride)-g-poly(methyl 6-O-methacryloyl-α-D-glucoside) (P(Sd-alt-MAnh)-g-P(6-O-MMAGIc)) are described in this paper. Reversible addition-fragmentation chain transfer (RAFT)-mediated polymerisation was used to synthesise four well-defined atom transfer radical polymerisation (ATRP) macroinitiators (the backbone of the glycopolymer brushes). These ATRP macroinitiators were subsequently used in the ‘grafting from’ approach (in which side chains are grown from the backbone) to prepare high molar mass and low polydispersity index glycopolymer brushes with different grafting densities along the backbone. The number average molar mass of the glycopolymer brushes was determined using size exclusion chromatography with a multi-angle laser light scattering detector and further structural characterisation was conducted using 1H-nuclear magnetic resonance spectroscopy. The results confirmed that glycopolymer brushes were successfully synthesised via a combination of RAFT-mediated polymerisation and ATRP.


ATRP; grafting density; glycopolymer; macroinitiators; RAFT


Total abstract views: 1811
Total article views: 2995


Zhang M, Müller AHE. Cylindrical polymer brushes. J Polym Sci Part A: Polym Chem. 2005;43:3461–3481. doi:10.1002/pola.20900

Zhang M, Breiner T, Mori H, Müller AHE. Amphiphilic cylindrical brushes with poly(acrylic acid) core and poly(n-butyl acrylate) shell and narrow length distribution. Polymer. 2003;44(5):1449–1458. doi:10.1016/S0032-3861(02)00774-7

Venkatesh R, Yajjou L, Koning CE, Klumperman B. Novel brush copolymers via controlled radical polymerisation. Macromol Chem Phys. 2004;205:2161–2168. doi:10.1002/macp.200400252

Advincula RC, Brittain WJ, Caster KC, Ruhe J. Polymer brushes: Synthesis, characterisation, applications. Weinheim:Wiley-VCH; 2004.

Barbey R, Lavanant L, Paripovic D, et al. Polymer brushes via surface-initiated controlled radical polymerisation: Synthesis, characterisation, properties, and applications. Chem Rev. 2009;109(11):5437–5527. doi:10.1021/cr900045a , PMid:19845393

Lee H, Matyjaszewski K, Yu S, Sheiko S. Molecular brushes with spontaneous gradient by atom transfer radical polymerisation. Macromolecules. 2005;38(20):8264–8271. doi:10.1021/ma051231z

Mori H, Müller AHE. New polymeric architectures with (meth)acrylic acid segments. Prog Polym Sci. 2003;28:1403–1439. doi:10.1016/S0079-6700(03)00076-5

Borner HG, Duran D, Matyjaszewski K, Da Silva M, Sheiko S. Synthesis of molecular brushes with gradient in grafting density by atom transfer polymerisation. Macromolecules. 2002;35(9):3387–3394. doi:10.1021/ma012100a< /P >

Borner HG, Beers K, Matyjaszewski K, Sheiko S, Moller M. Synthesis of molecular brushes with block copolymer side chains using atom transfer radical polymerisation. Macromolecules. 2001;34(13):4375–4383. doi:10.1021/ma010001r

Neugebauer D, Sumerlin BS, Matyjaszewski K, Goodhart B, Sheiko S. How dense are cylindrical brushes grafted from a multifunctional macroinitiator. Polymer. 2004;45:8173–8179. doi:10.1016/j.polymer.2004.09.069

Sumerlin BS, Neugebauer D, Matyjaszewski K. Initiation efficiency in the synthesis of molecular brushes by grafting from via atom transfer radical polymerisation. Macromolecules. 2005;38:702–708. doi:10.1021/ma048351b

Neugebauer D, Zhang Y, Pakula T, Matyjaszewski K. Heterografted PEO-PnBA brush copolymers. Polymer. 2003;44:6863–6871. doi:10.1016/j. polymer.2003.08.028

Hawker CJ, Bosman AW, Harth E. New polymer synthesis by nitroxide mediated living radical polymerisations. Chem Rev. 2001;101:3661–3688. doi:10.1021/ cr990119u, PMid:11740918

Beers KL, Gaynor SG, Matyjaszewski K, Sheiko S, Moller M. The synthesis of densely grafted copolymers by atom transfer radical polymerisation. Macromolecules. 1998;31:9413–9415. doi:10.1021/ma981402i

Albertin L, Stenzel MH, Barner-Kowollik C, Foster R, Davis P. Well-defined diblock glycopolymers from RAFT polymerisation in homogeneous aqueous medium. Macromolecules. 2005;38:9075–9084. doi:10.1021/ma051310a

You LC, Lu FZ, Li ZC, Zhang W, Li FM. Glucose-sensitive aggregates formed by poly(ethylene oxide)-block-poly(2-glucosyloxyethyl acrylate) with concanavalin A in dilute aqueous medium. Macromolecules. 2003;36:1–4. doi:10.1021/ma025641o

Bernard J, Hao X, Davis TP, Barner-Kowollik C, Stenzel MH. Synthesis of various glycopolymer architectures via RAFT polymerisation: From block copolymers to stars. Biomacromolecules. 2006;7:232–238. doi:10.1021/bm0506086 , PMid:16398520

Novick SJ, Dordick JS. Preparation of active and stable biocatalytic hydrogels for use in selective transformations. Chem Mater. 1998;10:955–958. doi:10.1021/ cm9708123

Palomino E. Carbohydrate handles as natural resources in drug delivery. Adv Drug Deliv Rev. 1994;13:311–323. doi:10.1016/0169-409X(94)90017-5

Wulff G, Zhu L, Schmidt H. Investigations on surface-modified bulk polymers. 1. Copolymers of styrene with a styrene moiety containing a sugar monomer. Macromolecules. 1997;30:4533–4539. doi:10.1021/ma961890z

Karamuk E, Mayer J, Wintermantel E, Akaike T. Partially degradable film/fabric composites: Textile scaffolds for liver cell culture. Artif Organs. 1999;23:881–884. doi:10.1046/j.1525-1594.1999.06308.x , PMid:10491038

Okada M. Molecular design and syntheses of glycoploymers. Prog Polym Sci. 2001;26:67–104. doi:10.1016/S0079-6700(00)00038-1

Lowe AB, Sumerlin BS, McCormick CL. The direct polymerisation of 2-methacryloxyethyl glucoside via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerisation. Polymer. 2003;44:6761–6765. doi:10.1016/j.polymer.2003.08.039

Okada M, Tachikawa K, Aoi K. Biodegradable polymers based on renewable resources. II. Synthesis and biodegradability of polyesters containing furan rings. J Polym Sci Part A: Polym Chem. 1997;35:2729–2737. doi:10.1002/(SICI)1099-0518(19970930)35:13<2729::AID-POLA18>3.0.CO;2-D

Granville AM, Quémener D, Davis TP, Barner-Kowollik C, Stenzel MH. Chemo-enzymatic synthesis and RAFT polymerisation of 6-methacryloyl mannose: A suitable glycopolymer for binding to the tetrameric lectin concanavalin A. Macromol Symp. 2007;255(1):81–89. doi:10.1002/masy.200750909

Waters Millennium32. Version 3.05. Milford, MA:Waters Corporation.

ASTRA® V. Santa Barbara, CA: Wyatt Technology Corporation.

Moad G, Chiefari J, Chong BY, et al. Living free radical polymerisation with reversible addition fragmentation chain transfer (the life of RAFT). Polym Int. 2000;49:993–1001. doi:10.1002/1097-0126(200009)49:9<993::AID-PI506>3.0.CO;2-6

Matyjaszewski K, Gaynor SG, Kulfan A, Podwika M. Preparation of hyperbranched polyacrylates by atom transfer radical polymerisation. Macromolecules. 1997;30(17):5192–5194. doi:10.1021/ma970359g

Haddleton DM, Crossman MC, Dana BH, et al. Atom transfer polymerisation of methyl methacrylate mediated by alkylpyridylmethanimine type ligands, copper(I) bromide, and alkyl halides in hydrocarbon solution. Macromolecules. 1999;32:2110–2119. doi:10.1021/ma981670g

Albertin L, Stenzel M, Barner-Kowollik C, Foster LJR, Davis TP. Well-defined glycopolymers from RAFT polymerisation: Poly(methyl 6-O-methacryloyl-alpha-D-glucoside) and its block copolymer with 2 hydroxyethyl methacrylate. Macromolecules. 2004;37:7530–7537. doi:10.1021/ma049129+

Zhang Y, Huang J, Chen Y. Reactive dendronized copolymer of styryl dendron and maleic anhydride: A single molecular scaffold. Macromolecules. 2005;38(12):5069–5077. doi:10.1021/ma047449n

Wang T-L, Lee H-M, Kuo P-L. Functional polymers for colloidal applications. XIV. Syntheses of styrene-maleic anhydride copolymers with different charges and their ability to disperse kaolinite particles. J Appl Polym Sci. 2000;78(3):592–602. doi:10.1002/1097-4628(20001017)78:3<592::AID-APP140>3.0.CO;2-U

Saad GR, Morsi RE, Mohammady SZ, Elsabee MZ. Dielectric relaxation of monoesters based poly(styrene-co-maleic anhydride) copolymer. J Polym Res. 2008;15:115–123. doi:10.1007/s10965-007-9150-6

Cheng G, Boker A, Zhang M, Krausch G, Müller AHE. Amphiphilic cylindrical core-shell brushes via a grafting from process using ATRP. Macromolecules. 2001;34(20):6883–6888. doi:10.1021/ma0013962

De Vries A, Klumperman B, De Wet-Roos D, Sanderson RD. The effect of reducing monosaccharides on the atom transfer radical polymerisation of butyl methacrylate. Macromol Chem Phys. 2001;202:1645–1648. doi:10.1002/1521-3935(20010601)202:9<1645::AID-MACP1645>3.0.CO;2-K

Russum J, Jones CW, Schork FJ. Continuous reversible addition-fragmentation chain transfer polymerisation in miniemulsion utilizing a multi-tube reaction system. Macromol Rapid Comm. 2004;25:1064–1068. doi:10.1002/marc.200400086

Fleet R, McLeary JB, Grumel V, et al. Preparation of new multiarmed RAFT agents for the mediation of vinyl acetate polymerisation. Macromol Symp. 2007;255(1):8–19. doi:10.1002/masy.200750902

Djalali R, Li S-Y, Schmidt M. Amphipolar core shell cylindrical brushes as templates for the formation of gold clusters and nanowires. Macromolecules. 2002;35(11):4282–4288. doi:10.1021/ma0113733

Sheiko SS, Moller M. Visualization of macromolecules: A first step to manipulation and controlled response. Chem Rev. 2001;101(12):4099–4124. doi:10.1021/ cr990129v, PMid:11740928

Muthukrishnan S, Zhang M, Burkhardt M, et al. Molecular sugar sticks: Cylindrical glycopolymer brushes. Macromolecules. 2005;38(19):7926–7934. doi:10.1021/ ma0515073

Kumaki J, Hashimoto T. Conformational change in an isolated single synthetic polymer chain on a mica surface observed by atomic force microscopy. J Am Chem Soc. 2003;125(16):4907–4917. doi:10.1021/ja0290429, PMid:12696910

Severac R, Lacroix-Desmazes P, Boutevin B. Reversible addition-fragmentation chain-transfer (RAFT) copolymerisation of vinylidene chloride and methyl acrylate. Polym Int. 2002;51:1117–1122. doi:10.1002/pi.932

Reader Comments

Before posting a comment, read our privacy policy.

Post a comment (login required)


Crossref Citations

1. Novel Glycopolymer Brushes via ATRP: 1. Synthesis and Characterization
Reda Fleet, Eric T. A. van den Dungen, Bert Klumperman
Macromolecular Chemistry and Physics  vol: 212  issue: 20  first page: 2191  year: 2011  
doi: 10.1002/macp.201100288