Review Articles

A review of shaped carbon nanomaterials

Neil J. Coville, Sabelo D. Mhlanga, Edward N. Nxumalo, Ahmed Shaikjee
South African Journal of Science | Vol 107, No 3/4 | a418 | DOI: https://doi.org/10.4102/sajs.v107i3/4.418 | © 2011 Neil J. Coville, Sabelo D. Mhlanga, Edward N. Nxumalo, Ahmed Shaikjee | This work is licensed under CC Attribution 4.0
Submitted: 26 August 2010 | Published: 25 March 2011

About the author(s)

Neil J. Coville, University of the Witwatersrand, South Africa
Sabelo D. Mhlanga, University of the Witwatersrand, South Africa
Edward N. Nxumalo, University of the Witwatersrand, South Africa
Ahmed Shaikjee, University of the Witwatersrand, South Africa

Abstract

Materials made of carbon that can be synthesised and characterised at the nano level have become a mainstay in the nanotechnology arena. These carbon materials can have a remarkable range of morphologies. They can have structures that are either hollow or filled and can take many shapes, as evidenced by the well-documented families of fullerenes and carbon nanotubes. However, these are but two of the shapes that carbon can form at the nano level. In this review we outline the types of shaped carbons that can be produced by simple synthetic procedures, focusing on spheres, tubes or fibres, and helices. Their mechanisms of formation and uses are also described.

Keywords

carbon nanotubes; carbon spheres; carbon helices; graphene; carbon fibres

Metrics

Total abstract views: 2920
Total article views: 7603

References


Levi P. The periodic table. New York: Shocken Books, 1984; p. 227.

Dresselhaus MS, Dressalhaus G, Eklund PC. Science of fullerenes and carbon nanotubes. New York: Academic Press; 1996.

Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58. doi:10.1038/354056a0

Salvetat J-P, Briggs GAD, Bonard J-M, et al. Elastic and shear moduli of single walled carbon nanotube ropes. Phys Rev Lett. 1999;82(5):944–947. doi:10.1103/PhysRevLett.82.944

Pop E, Mann D, Wang Q, Goodson K, Dai H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2005;6(1):96–100. doi:10.1021/nl052145f , PMid:16402794

Nkosi BS, Coville NJ, Adams MD, Hutchings GJ. Hydrochlorination of acetylene using carbon supported gold catalysts: A study of catalyst reactivation. J Catal. 1991;128:378–386. doi:10.1016/0021-9517(91)90296-G

Adams MD. The elution of gold from activated carbon at room temperature using sulfide solutions. J S Afr Inst Mining Metallurgy. 1994;Aug:187–198.

McKune C. Pebble bed modular reactor demonstration plant is funded but not constructed. S Afr J Sci. 2010;106(5/6):1–3. doi:10.4102/sajs.v106i5/6.287

Geim AK, Novoselov KS. The rise of graphene. Nature Mater. 2007;6:183–191. doi:10.1038/nmat1849 , PMid:17330084

Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:603–605. doi:10.1038/363603a0

De J, Krijn P, Geus JW. Carbon nanofibres: Catalytic synthesis and applications. Catal Rev. 2000;42(4):481–510. doi:10.1081/CR-100101954

Monthioux M, Kuznetsov VL. Who should be given the credit for the discovery of carbon nanotubes? Carbon. 2006;44:1621–1623. doi:10.1016/j. carbon.2006.03.019

Mhlanga SD, Mondal KC, Carter R, Witcomb MJ, Coville NJ. The effect of catalyst preparation method on the catalytic synthesis of multiwalled carbon nanotubes using Fe-Co/CaCO3 catalysts. S Afr J Chem. 2009;62:67–76.

Nyamori VO, Mhlanga SD, Coville NJ. The use of organometallic transition metal complexes in the synthesis of shaped carbon nanomaterials. J Organomet Chem. 2008;693:2205–2222. doi:10.1016/j.jorganchem.2008.04.003

Nyamori VO, Nxumalo EN, Coville NJ. The effect of arylferrocene ring substituents on the synthesis of multi-walled carbon nanotubes. J Organomet Chem. 2009;694(14):2222–2227. doi:10.1016/j.jorganchem.2009.02.031

Mohlala MS, Liu XY, Robinson JM, Coville NJ. Organometallic precursors for use as catalysts in carbon nanotube synthesis. Organometallics. 2005;24:972–976. doi:10.1021/om049242o

Balasubramanian K, Burghard M. Chemically functionalised carbon nanotubes. Small. 2005;1(2):180–192. doi:10.1002/smll.200400118 , PMid:17193428

Taylor R. Lecture notes on fullerenes. London: Imperial College Press; 1999. doi:10.1142/9781848160675

Nxumalo EN, Nyamori VO, Coville NJ. CVD synthesis of nitrogen doped carbon nanotubes using ferrocene/aniline mixtures. J Organomet Chem. 2008;693:2942–2948. doi:10.1016/j.jorganchem.2008.06.015

Endo M, Hayashi T, Kim YA, Terrones M, Dresselhaus MS. Applications of carbon nanotubes in the twenty-first century. Phil Trans Roy Soc Lond A. 2004;362:2223–2238. doi:10.1098/rsta.2004.1437 , PMid:15370479

Nyamori VO, Coville NJ. Effect of ferrocene/carbon ratio on the size and shape of carbon nanotubes and microspheres. Organometallics. 2007;26:4083–4085. doi:10.1021/om7003628

Osváth Z, Koós AA, Horváth ZE, et al. Arc-grown Y-branched carbon nanotubes observed by scanning tunneling microscopy (STM). Chem Phys Lett. 2002;365(3–4):338–342. doi:10.1016/S0009-2614(02)01483-5

Durbach SH, Krause RW, Witcomb MJ, Coville NJ. Synthesis of branched carbon nanotubes (BCNTs) using copper catalysts in a hydrogen-filled DC arc discharger. Carbon. 2009;43:635–644. doi:10.1016/j.carbon.2008.10.037

Ebbesen TW, editor. Carbon nanotubes: Preparation and properties. Boca Raton: CRC Press; 1997.

Tomanek D, Enbody RJ. Science and application of nanotubes. New York: Springer-Verlag; 2000.

Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Coville NJ. Fischer-Tropsch synthesis over iron catalysts supported on carbon nanotubes. Appl Catal General A. 2005;287:60–67. doi:10.1016/j.apcata.2005.03.029

Bahome MC, Jewell LL, Padayachy K, et al. Fe:Ru small particle bimetallic catalysts supported on carbon nanotubes for use in Fischer-Tropsch synthesis. Appl Catal General A. 2007;328:243–251. doi:10.1016/j.apcata.2007.06.018

Nakayama Y, Akita S. Field-emission device with carbon nanotubes for a flat panel display. Synth Met. 2001;117:207–210. doi:10.1016/S0379-6779(00)00365-9

Wang QH, Setlur AA, Lauerhaas, JM, Dai JY, Seelig EW, Chang RPH. A nanotube-based field-emission flat panel display. Appl Phys Lett. 1998;72(22):2912–2913. doi:10.1063/1.121493

Mordkovich VZ. Carbon nanofibres: A new ultrahigh-strength material for chemical technology. Theor Found Chem Eng. 2003;37(5):429–438. doi:10.1023/A:1026082323244

Kroto HW, McKay K. The formation of quasi-icosahedral spiral shell carbon particles. Nature. 1988;331:328–331. doi:10.1038/331328a0

Krätschmer W, Fostiropoulos K, Huffman DR. The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: Evidence for the presence of the CbO molecule. Chem Phys Lett. 1990;170:167–170. doi:10.1016/0009-2614(90)87109-5

Guldi DM, Prato M. Excited-state of C60 fullerene derivatives. Acc Chem Res. 2000;33:695–703. doi:10.1021/ar990144m , PMid:11041834

Mamo MA, Machado WS, van Otterlo WAL, Coville NJ, Hümmelgen IA. Simple write-once-read-many-times memory device base on carbon spheres-poly(vynilphenol) composite. Organ Electron. In press.

Khan SD, Ahmad S. Modelling of C2 to the addition of C60. Nanotechnology. 2006;17:4654–4658. doi:10.1088/0957-4484/17/18/021

Deshmukh AA, Mhlanga SD, Coville NJ. Carbon spheres: A review. Mater Sci Eng R. 2010;70(1–2):1–28. doi:10.1016/j.mser.2010.06.017

Fine PM, Cass GR, Simonet BR. Environ Sci Technol. 1999;33:2352–2355. doi:10.1021/es981039v

Xia Y, Gates B, Yin Y, Lu Y. Monodispersed colloidal spheres: Old materials with new applications. Adv Mater. 2000;12:693–713. doi:10.1002/(SICI)1521- 4095(200005)12:10<693::AID-ADMA693>3.3.CO;2-A

Inagaki M. Discussion of the formation of nanometric texture in spherical carbon bodies. Carbon. 1997;31:711–713. doi:10.1016/S0008-6223(97)86645-6

Serp PH, Feurer R, Kalck PH, Kihn Y, Faria JL, Figueiredo JL. A chemical vapour deposition process for the production of carbon nanospheres. Carbon. 2001;39:621–626. doi:10.1016/S0008-6223(00)00324-9

Ma Y, Hu Z, Huo K, et al. A practical route to the production of carbon nanocages. Carbon. 2005;43:1667–1672. doi:10.1016/j.carbon.2005.02.004

Papirer E, Lacroix R, Donnet J-B. Chemical modification and surface properties of carbon blacks. Carbon. 1996;34:1521–1529. doi:10.1016/S0008-6223(96)00103 0

Xiong H, Moyo M, Rayner MK, Jewell LL, Billing DG, Coville NJ. Autoreduction and catalytic performance of a cobalt Fischer–Tropsch synthesis catalyst supported on nitrogen-doped carbon spheres. ChemCatChem. 2010;2:514–518. doi:10.1002/cctc.200900309

Mondal KC, Strydom AM, Tetana Z, et al. Boron doped carbon microspheres. Mater Chem Phys. 2009;114:973–977. doi:10.1016/j.matchemphys.2008.11.008

Lahaye J, Ehrburger-Dolle F. Mechanisms of carbon black formation. Correlation with the morphology of aggregates. Carbon. 1994;32:1319–1324. doi:10.1016/0008-6223(94)90118-X

Wang ZL, Wang ZC. Pairing of pentagonal and heptagonal carbon rings in the growth of nanosize carbon spheres synthesised by a mixed-valent oxide-catalytic carbonization process. J Phys Chem. 1996;100:17725–17731. doi:10.1021/jp962762f

Pol SV, Pol VG, Sherman D, Gedanken A. A solvent free process for the generation of strong, conducting carbon spheres by the thermal degradation of waste polyethylene terephthalate. Green Chem. 2009;11:448–451. doi:10.1039/b819494g

Donath E, Sukhorukov GB, Caruso F, Davis SA, Mőhwald H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed. 1998;37(16):2201–2205. doi:10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.3.CO;2-5

Davis WR, Slawson RJ, Rigby GR. An unusual form of carbon. Nature. 1953;171:756. doi:10.1038/171756a0

Motojima S. Development of ceramic microcoils with 3D-herical/spiral structures. J Cer Soc Jpn. 2008;116(9):921–927. doi:10.2109/jcersj2.116.921

Lau TK, Lu M, Hui D. Coiled carbon nanotubes: Synthesis and their potential applications in advanced composite structures. Compos Part B Eng. 2006;37:437–448. doi:10.1016/j.compositesb.2006.02.008

Kawaguchi M, Nozaki K, Motojima S, Iwanaga H. A growth mechanism of regularly coiled carbon fibres through acetylene pyrolysis. J Cryst Growth. 1992;118:309–313. doi:10.1016/0022-0248(92)90077-V

Cheng J-B, Du J-H, Bai S. Growth mechanism of carbon microcoils with changing fibre cross-section shape. New Carbon Mater. 2009;24(4):354–358. doi:10.1016/S1872-5805(08)60057-8

Motojima S, Kagiya S, Iwanaga H. Vapour-phase formation of micro-coiled carbon fibres using Ni catalyst and PH3 impurity. Mater Sci Eng. 1995;B34:47–52. doi:10.1016/0921-5107(95)01234-6

Qin Y, Zhang Y, Sun X. Synthesis of helical and straight carbon nanofibres by chemical vapor deposition using alkali chloride catalysts. Microchim Acta. 2009;164:425–430. doi:10.1007/s00604-008-0078-2

Qin Y, Yu L, Wang Y, Li G, Cui Z. Amorphous helical carbon nanofibres synthesised at low temperature and their elasticity and processability. Solid State Commun. 2006;138:5–8. doi:10.1016/j.ssc.2006.01.048

Yang S, Chen X, Katsuno T, Motojima S. Controllable synthesis of carbon microcoils/nanocoils by catalysts supported on ceramics using catalyzed chemical vapor deposition process. Mater Res Bull. 2007;42(3):465–473. doi:10.1016/j.materresbull.2006.06.026

Szabó A, Fonseca A, Nagy JB, Lambin PH, Biró LP. Structural origin of coiling in coiled carbon nanotubes. Carbon. 2005;43:1628–1633. doi:10.1016/j.carbon.2005.01.025

Hernadi K, Thiên-Nga L, Forró L. Growth and microstructure of catalytically produced coiled carbon nanotubes. J Phys Chem B. 2001;105:12464–12468. doi:10.1021/jp011208p

Du F, Liu J, Guo Z. Shape controlled synthesis of Cu2O and its catalytic application to synthesise amorphous carbon nanofibres. Mater Res Bull. 2009;44:25–29. doi:10.1016/j.materresbull.2008.04.011

Hanson PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsøe H. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science. 2002;295(5562):2053–2055. doi:10.1126/science.1069325 , PMid:11896271

Volodin A, Buntinx D, Aslskog M, Fonseca A, Nagy JB, van Haesendonck C. Coiled carbon nanotubes as self-sensing mechanical resonators. Nano Lett. 2004;4(9):1775–1779. doi:10.1021/nl0491576

Chen X, Zhnag S, Dikin DA, et al. Mechanics of a carbon nanocoil. Nano Lett. 2003;3(9):1299–1304. doi:10.1021/nl034367o

Motojima S, Hoshiya S, Hishikawa Y. Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands. Carbon. 2003;41:2653–2689. doi:10.1016/S0008-6223(03)00292-6

Tang N, Kuo W, Jeng C, Wang L, Lin K, Du Y. Coil-in-coil carbon nanocoils: 11 gram-scale synthesis, single nanocoil electrical properties, and electrical contact improvement. ACS Nano. 2010;4(2):781–788. doi:10.1021/nn901417z , PMid:20092354

Iijima S, Yudasaka M, Yamada R, et al. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett. 1999;309(3-4):165–170. doi:10.1016/S0009-2614(99)00642-9

Tsakadze ZL, Levchenko I, Ostrikov K, Xu S. Plasma-assisted self-organized growth of uniform carbon nanocone arrays. Carbon. 2007;45:2022–2030. doi:10.1016/j.carbon.2007.05.030

Shang N, Milne WI, Jiang X. Tubular graphite cones with single-crystal nanotips and their antioxygenic properties. J Am Chem Soc. 2007;129:8907–8911. doi:10.1021/ja071830g , PMid:17589995

Ajima K, Yudasaka M, Murakami T, Maigne A, Shiba K, Iijima S. Carbon nanohorns as anticancer drug carriers. Mol Pharm. 2005;2(6):475–480. doi:10.1021/mp0500566 , PMid:16323954

Rode AV, Gamaly EG, Luther-Davies B. Formation of cluster-assembled carbon nano-foam by high-repetition-rate laser ablation. Appl Phys A Mater Sci Process. 2000;70(2):35–144. doi:10.1007/s003390050025

Zhang Y, Sun X. Synthesis of carbon nanofibres and foam by catalytic chemical vapour deposition using a water-soluble alkali salt catalyst. Adv Mater. 2007;19:961–964. doi:10.1002/adma.200602084

Jacoby M. Graphene: Carbon as this as can be. Chem Eng News. 2009;87(9):14–20. doi:10.1021/cen-v087n009.p014

Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 2007;6:652– 655. doi:10.1038/nmat1967 , PMid:17660825

Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Architecture of graphdiyne nanoscale films. Chem Commun. 2010;46:3256–3258. doi:10.1039/b922733d , PMid:20442882

Hester RE, Harrison RM. Nanotechnology: Consequences for human health and the environment. Issues in environmental science and technology. Cambridge: Royal Society of Chemistry; 2007.



Reader Comments

Before posting a comment, read our privacy policy.

Post a comment (login required)

Crossref Citations

No related citations found.