Research Articles

Ultrasonic wave effects on the diameter of TiO2 nanoparticles

Hossain Milani Moghaddam, Shahruz Nasirian
South African Journal of Science | Vol 107, No 3/4 | a389 | DOI: | © 2011 Hossain Milani Moghaddam, Shahruz Nasirian | This work is licensed under CC Attribution 4.0
Submitted: 04 August 2010 | Published: 14 March 2011

About the author(s)

Hossain Milani Moghaddam, Mazandaran University, Iran, Islamic Republic of
Shahruz Nasirian, Mazandaran University, Iran, Islamic Republic of

Share this article

Bookmark and Share


Titanium dioxide (TiO2) nanostructured materials have attracted a great deal of attention because of their numerous applications. However, TiO2 applications depend strongly on the material’s high homogeneity and definite phase composition, morphology, particle size, high surface area and porosity, which are dependent on the sample history, the method of preparation and heat treatment. We synthesised TiO2 nanopowder with an anatase structure by the sol-gel method using TiCl4-ethanol solution as a precursor in an argon gas environment, with and without applying ultrasonic waves. Our results show that the use of ultrasonic waves (after aging) has a significant effect on the homogeneity and size of TiO2 nanoparticles. A smaller crystallite size was obtained using ultrasonic waves. For this purpose, the average diameter of TiO2 nanoparticles was decreased by about 3 nm. The synthesised powder was characterised by X-ray diffraction, scanning electron microscopy and transmission electron microscopy.


anatase; diameter; TiCl4; TiO2 nanoparticles; sol-gel method; ultrasound


Total abstract views: 1284
Total article views: 2194


Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–38. doi:10.1038/238037a0, PMid:12635268

Trung T, Ha CS. One-component solution system to prepare nanometric anatase TiO2. Mater Sci Eng. 2004;C(24):19–22.

O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353:737–740. doi:10.1038/353737a0

Adachi M, Murata Y, Takao J, Jiu J, Sakamoto M, Wang F. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J Am Chem Soc. 2004;126:14943–14949. doi:10.1021/ ja048068s, PMid:15535722

Dürr M, Schmid A, Obermaier M, Rosselli S, Yasuda A, Nelles G. Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nat Mater. 2005;4:607–611. doi:10.1038/nmat1433, PMid:16041379

Wang W, Gu B, Liang L, Hamilton WA, Wesolowski DJ. Synthesis of rutile (a-TiO2) nanocrystals with controlled size and shape by low-temperature hydrolysis: Effects of solvent composition. J Phys Chem. 2004;B(108):14789–14792.

Skubal LR, Meshkov NK, Vogt MC. Detection and identification of gaseous organics using a TiO2 sensor. J Photochem Photobiol. 2002;A(148):103–108.

Meier KR, Gratzel M. Redox targeting of oligonucleotides anchored to nanocrystalline TiO2 films for DNA detection. ChemPhysChem. 2002;3:371–374. doi:10.1002/1439-7641(20020415)3:4<371::AID-CPHC371>3.0.CO;2-O

Thelakkat M, Schmitz C, Schmidt HW. Fully vapor-deposited thin-layer titanium dioxide solar cells. Adv Mater. 2002;14:577–581. doi:10.1002/1521- 4095(20020418)14:8<577::AID-ADMA577>3.0.CO;2-S

Lim SH, Luo J, Zhong Z, Ji W, Lin J. Room-temperature hydrogen uptake by TiO2 nanotubes. Inorg Chem. 2005;44:4124–4126. doi:10.1021/ic0501723, PMid:15934734

Kavan L, Grätzel M, Rathousky J, Zukal A. Nanocrystalline TiO2 (anatase) electrodes: Surface morphology, adsorption and electrochemical properties. J Electrochem Soc. 1996;143:394–400. doi:10.1149/1.1836455

Khan SUM, Al-Shahry M, IngLer WB. Efficient photochemical water splitting by a chemically modified n-TiO2. Science. 2002;297:2243–2245. doi:10.1126/ science.1075035, PMid:12351783

Park JH, Kim S, Bard AJ. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. NanoLett. 2006;6:24–28. doi:10.1021/nl051807y, PMid:16402781

Gonzalez RJ, Zallen R, Berger H. Infrared reflectivity and lattice fundamentals in anatase TiO2. Phys Rev. 1997;B(55):7014–7017.

Jiang X, Herricks T, Xia Y. Monodispersed spherical colloids of titania: Synthesis, characterization, and crystallization. Adv Mater. 2003;15:1205–1209. doi:10.1002/adma.200305105

Wijnhoven G, Vos WL. Preparation of photonic crystals made of air spheres in titania. Science. 1998;281:802–804. doi:10.1126/science.281.5378.802

Xiaobo C, Mao SS. Titanium dioxide nanomaterials: Synthesis, properties, modifications and application. Chem Rev. 2007;107:2891–2906. doi:10.1021/ cr0500535, PMid:17590053

Zhu Y, Zhang L, Gao C, Cao L. The synthesis of nanosized TiO2 powder using a sol-gel method TiCl4 as a precursor. J Math Sci. 2000;35:4049–4054. doi:10.1023/A:1004882120249

Mahshid S, Askari M, Sasani Ghamsari M. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J Mater Process Technol. 2007;189:296–300. doi:10.1016/j.jmatprotec.2007.01.040

Kaneko M, Okura I. Photocatalysis science and technology. Berlin/Heidelberg/New York: Kodansha/Springer Press, 2002; p. 57–260.

Tang Z, Zhang J, Cheng Z, Zhang Z. Synthesis of nanosized rutile TiO2 powder at low temperature. Mater Chem Phys. 2002;77:314–317. doi:10.1016/S0254- 0584(02)00003-2

Guo W, Lin Z, Wang X, Song G. Sonochemical synthesis of nanocrystalline TiO2 by hydrolysis of titanium alkoxides. Microelectron Eng. 2003;66:95–101. doi:10.1016/S0167-9317(03)00031-5

Ramaswamy V, Jagtap NB, Vijayanand S, Bhange DS, Awati PS. Photocatalytic decomposition of methylene blue on nanocrystalline titania prepared by different methods. Mater Res Bull. 2008;43:1145–1152. doi:10.1016/j.materresbull.2007.06.003

Morales BA, Novaro O. Effect of hydrolysis catalyst on the Ti deficiency and crystallite size of sol-gel TiO2 crystalline phases. J Mater Res. 1995;10:2788–2796. doi:10.1557/JMR.1995.2788

Nam HJ, Amemiya T, Murabayashi M, Itoh K. Photocatalytic activity of sol-gel TiO2 thin films on various kinds of glass substrates: The effects of Na+ and primary particle size. J Phys Chem. 2004;B(108):8254–8259.

Yoldas BE. Hydrolysis of aluminium alkoxides and bayerite conversion. J Appl Chem Biotechnol. 1973;23:803–809. doi:10.1002/jctb.5020231103

Pal M, Garcia Serrano J, Santiago P, Pal U. Size-controlled synthesis of spherical TiO2 nanoparticles: Morphology, crystallization, and phase transition. J Phys Chem. 2007;C(111):96–102.

Lee KM, Suryanarayanan V, Ho KC. The influence of surface morphology of TiO2 coating on the performance of dye-sensitized solar cells. Sol Energy Mater Sol Cells. 2006;90:2398–2404. doi:10.1016/j.solmat.2006.03.034

Brinker J, Scherer GW. Sol-gel science. 1st ed. San Diego: Academic Press, 1990; p. 50–720.

Grant MH, Othmer K. Hydrogen sulfide in toxicology of the eye. Encycl Chem Technol. 1997;24:225–229.

Litter MI, Navio JA. Photocatalytic properties of iron-doped titania semiconductors. J Photochem Photobiol A Chem. 1994;84:171–181.

Palmisano L, Augugliaro V, Sclafani A, Schiavello M. Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. J Phys Chem. 1988;92:6710–6713. doi:10.1021/j100334a044

Wang Y, Cheng H, Hao Y, Ma J, Li W, Cai S. Characterization and photo-electric behaviors of Fe(III) doped TiO2 nanoparticles. J Mater Sci. 1999;34:3721–3729. doi:10.1023/A:1004611724069

Cheng H, Ma J, Zhao Z, Qi L. Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater. 1995;7:663–671. doi:10.1021/ cm00052a010

Wang Y, Hao Y, Cheng H, et al. The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrode and higher solar cell conversion efficiency based on Zn+2-doped TiO2 electrode. J Mater Sci. 1999;34:2773–2779. doi:10.1023/A:1004658629133

Akhtar MK, Xiong Y, Pratsinis SE. Vapor synthesis of titania powder by titanium tetrachloride oxidation. AIChE J. 1991;37:1561–1570. doi:10.1002/ aic.690371013

Ding Z, Hu X, Lu GQ, Yue PL, Greenfield PF. Novel silica gel supported TiO2 photocatalyst synthesised by CVD method. Langmuir. 2000;16:6216–6222. doi:10.1021/la000119l

Wang CC, Zhang Z, Ying JY. Photocatalytic decomposition of halogenated organics over nanocrystalline titania. Nanostruct Mater. 1997;9:583–586. doi:10.1016/S0965-9773(97)00130-X

Burns A, Li W, Baker C, Shah SI. Sol-gel synthesis and characterization of neodymium-ion doped nanostructured titania thin films. Mater Res Soc Sym. 2002;703:193–197.

Coville NJ, Tshavhungwe AM. Mesoporous ethanesilica materials with bimodal and trimodal pore-size distributions synthesised in the presence of cobalt ions. S Afr J Sci. 2010;106(7/8), Art. #213, 5 pages. doi: 10.4102/sajs.v106i7/8.213

Wang Y, Chen S-G, Tang XH, et al. Mesoporous titanium dioxide: Sonochemical synthesis and application in dye-sensitized solar cells. J Mater Chem. 2001;11:521–526. doi:10.1039/b006070o

Huang W, Tang X, Wang Y, Koltypin Y, Gedanken A. Selective synthesis of anatase and rutile via ultrasound irradiation. Chem Commun. 2000;15:1415–1416. doi:10.1039/b003349i

Yu JC, Zhang LZ, Yu JG. Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework. Chem Mater. 2002;14:4647–4653. doi:10.1021/cm0203924

Oh CW, Lee GD, Park SS, Ju CS, Hong SS. Synthesis of nanosized TiO2 particles via ultrasonic irradiation and their photocatalytic activity. React Kinet Catal Lett. 2005;85:261–268. doi:10.1007/s11144-005-0269-3

Tian B, Chen F, Zhang J, Anpo M. Influences of acids and salts on the crystalline phase and morphology of TiO2 prepared under ultrasound irradiation. J Coll Interface Sci. 2006;303:142–148. doi:10.1016/j.jcis.2006.07.023, PMid:16890236

Liu Y, Li Y, Wang Y, Xie L, Zheng J, Li X. Sonochemical synthesis and photocatalytic activity of meso- and macro-porous TiO(2) for oxidation of toluene. J Hazard Mater. 2008;150:153–157. doi:10.1016/j.jhazmat.2007.04.088, PMid:17560714

Neppolian B, Wang Q, Jung H, Choi H. Ultrasonic-assisted sol-gel method of preparation of TiO2 nanoparticles: Characterization, properties and 4-chlorophenol removal application. Ultrason Sonochem. 2008;15:649–658. PMid:18024153

Yang K, Zhu J, Huang S, Zhu X, Ma G. Sonochemical synthesis and microstructure investigation of rod-like nanocrystalline rutile titania. Mater Lett. 2003;57:4639–4642. doi:10.1016/S0167-577X(03)00376-8

Latt KK, Kobayashi T. TiO2 nanosized powders controlling by ultrasound sol–gel reaction. Ultrason Sonochem. 2008;15:484–491. doi:10.1016/j. ultsonch.2007.08.001, PMid:17904404

Mahmoud MA, Poncheri A, Badr Y, Abd El Wahed MG. Photocatalytic degradation of methyl red dye. S Afr J Sci. 2009;105:299–303.

Reader Comments

Before posting a comment, read our privacy policy.

Post a comment (login required)

Crossref Citations

No related citations found.