Research Letters

Cosmic ray propagation in a fractal galactic medium

Hamid A. Kermani, Jalileldin Fatemi
South African Journal of Science | Vol 107, No 1/2 | a275 | DOI: https://doi.org/10.4102/sajs.v107i1/2.275 | © 2011 Hamid A. Kermani, Jalileldin Fatemi | This work is licensed under CC Attribution 4.0
Submitted: 13 May 2010 | Published: 24 January 2011

About the author(s)

Hamid A. Kermani, Department of Physics, Faculty of Science, University of Kerman, Islamic Republic of Iran
Jalileldin Fatemi, Department of Physics, Faculty of Science, University of Kerman, Islamic Republic of Iran

Abstract

Simple cosmic ray diffusion in magnetic fields is often discussed in terms of a characteristic scattering mean free path or equivalent diffusion coefficient. This assumes very simple properties of the structure of astrophysical magnetic fields. A better approximation is to assume that the magnetic structure has fractal properties and there is then the possibility of including very short and very long interaction lengths when modelling the propagation. Results of modelling such propagation in a fractal medium are discussed. Values of the propagation parameter (α) less than 2 were obtained and confirm the plausibility of the hypothesis that supernova are the origin of galactic cosmic rays in the energy range below the knee in the spectrum.

Keywords

cosmic ray; diffusion; fractal; magnetic field

Metrics

Total abstract views: 1217
Total article views: 2171

References


Protheroe RJ, Clay RW. Ultra high energy cosmic rays. Publication of the Astronomical Society of Australia. 2004;21:1–22. doi:10.1071/AS03047

Axford WI. The modulation of galactic cosmic rays in interplanetary medium. Planet Space Sci. 1965;13:115–130. doi:10.1016/0032-0633(65)90181-9

Berezhko EG, Elshin VK, Ksenfontov LT. [Cosmic ray acceleration in supernova remnants.] Zh Eksp Teor Fiz. 1996;109:3 [IETP (English translation);109:1]. Russian.

Elmegreen BG, Kim S, Staveley-Smith L. A fractal analysis of the HI emission from the Large Magellanic Cloud. Astrophys J. 2001;548:749. doi:10.1086/319021

Lagutin AA, Makrov VV, Tyumentsev AG. Anomalous diffusion of the cosmic rays: Steady state solution. Paper presented at: ICRC 2001. Proceedings of the 27th International Cosmic Ray Conference; 2001 Aug 7–15; Hamburg, Germany. Berlin: Copernicus GmbH; 2001. p. 1889.

Lagutin AA, Uchaikin VV. Fractional diffusion of cosmic rays. Paper presented at: ICRC 2001. Proceedings of the 27th International Cosmic Ray Conference; 2001 Aug 7–15; Hamburg, Germany. Berlin: Copernicus GmbH; 2001. p. 1900.

Erlykin AD, Lagutin AA, Wolfendale AW. Properties of the interstellar medium and the propagation of cosmic rays in the galaxy. Astropart Phys. 2003;19:351–362. doi:10.1016/S0927-6505(02)00216-5

Bouchaud JP, Georges A. Anomalous diffusion in disordered media: Statistical mechanics, models and physical applications. Phys Rep. 1990;195:127. doi:10.1016/0370-1573(90)90099-N

Buesching OC, Jager DE, Potgieter MS, Venter C. A cosmic ray positron anisotropy due to two middle-aged, nearby pulsars. Astrophys J. 2008;678:L39–L42. doi:10.1086/588465

Erlykin AD, Wolfendale AW. The origin of cosmic rays. Europhysics News. 2001;32:1–10. doi:10.1051/epn:2001617

Erlykin AD, Wolfendale AW. A single source of cosmic rays in the range 1015 _ 1016 eV. J Phys G: Nucl Part Phys. 1997;23:976–989. doi:10.1088/0954-3899/23/8/012



Reader Comments

Before posting a comment, read our privacy policy.

Post a comment (login required)

 

Crossref Citations

1. Escape time of cosmic rays from the galaxy in the anomalous diffusion model
V. V. Uchaikin, R. T. Sibatov, V. V. Saenko
Bulletin of the Russian Academy of Sciences: Physics  vol: 77  issue: 5  first page: 619  year: 2013  
doi: 10.3103/S1062873813050511