Research Articles

Optical and electrical properties of NiO for possible dielectric applications

Andre Venter, Johannes R. Botha
South African Journal of Science | Vol 107, No 1/2 | a268 | DOI: https://doi.org/10.4102/sajs.v107i1/2.268 | © 2011 Andre Venter, Johannes R. Botha | This work is licensed under CC Attribution 4.0
Submitted: 13 May 2010 | Published: 26 January 2011

About the author(s)

Andre Venter, NMMU, South Africa
Johannes R. Botha, Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa

Abstract

Nickel oxide (NiO) is a versatile wide band gap semiconductor material. At present, transparent conducting oxide films find application as transparent electrodes and window coatings for opto-electronic devices but most are n-type. However p-type conducting films, of which NiO is one, are required as optical windows for devices where minority carrier injection is required. In this study, nickel (Ni) was resistively deposited on glass substrates and oxidised (isochronally) in oxygen at temperatures ranging from 300 ˚C to 600 ˚C. The oxidised Ni layers were subsequently characterised using scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-visible photospectrometry in the range 200 nm – 1000 nm. The four point probe method (van der Pauw geometry) was used to determine the sheet resistances of the oxidised films. SEM results of the surface revealed a strong dependence of the surface texture and particle size on the oxidation temperature and time. XRD performed on the oxidised Ni indicated progressive transformation from nanograined polycrystalline Ni to NiO at elevated temperatures. Film thicknesses, particle sizes, energy band gap and wavelength-dependent refractive indices were determined from transmission and absorbance data.

Keywords

No related keywords in the metadata.

Metrics

Total abstract views: 1796
Total article views: 2928

References


Gopchandran KG, Joseph B, Abraham JT, Koshy P, Vidyan VK. The preparation of transparent electrically conducting indium oxide films by reactive vacuum evaporation. Vacuum. 1997;48:547. doi:10.1016/S0042-207X(97)00023-7

Benny J, Gopchandran KG, Thomas PV, Koshy P, Vaidyan VK. Optical and electrical properties of zinc oxide films prepared by spray pyrolysis. Mater Chem Phys. 1999;58:71.

Sasi B, Gopchandran KG, Manoj PK, et al. Preparation of transparent and semiconducting NiO films. Vacuum. 2003;68:149–154. doi:10.1016/S0042-207X(02)00299-3

Krier A, Yin M, Smirnov V, et al. The development of room temperature LEDs and lasers for mid-infrared spectral range. Phys Stat Sol A. 2008;205:129. doi:10.1002/pssa.200776833

Nel JM, Auret FD, Wu L, Legodi MJ, Meyer WE, Hayes M. Fabrication and characterisation of NiO/ZnO structures. Sens Actuators B. 2004;100:270–276. doi:10.1016/j.snb.2003.12.054

Zhou Y, Geng Y, Gu D. Influence of thermal annealing on optical properties and surface morphology of NiOx thin film. Mater Lett. 2007;61:2482–2485. doi:10.1016/j.matlet.2006.09.041

Jiang SR, Yan PX, Feng BX, Cai XM, Wang J. The response of a NiOx thin film to a step potential and its electrochromic mechanism. Mater Chem Phys. 2003;77:384. doi:10.1016/S0254-0584(02)00010-X

Sasi B, Gopchandran KG. Nanostructured mesoporous nickel oxide thin films. Nanotechnology. 2007;18:115613. doi:10.1088/0957-4484/18/11/115613

Cullity DB. Elements of X-ray diffraction. Notre Dame: Addision-Wesley; 1978.

Jiang SR, Feng BX, Yan PX, Cai XM, Lu SY. The effect of annealing on the electrochromic properties of microcrystalline NiOx films prepared by reactive magnetron rf sputtering. Appl Surf Sci. 2001;174:125. doi:10.1016/S0169-4332(01)00022-8

Patil PS, Kadam LD. Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films. Appl Surf Sci. 2002;199:211. doi:10.1016/S0169-4332(02)00839-5

Chen HL, Lu YM, Hwang WS. Thickness dependence of electrical and optical properties of sputtered nickel oxide films. Thin Solid Films. 2006;498:266. doi:10.1016/j.tsf.2005.07.124

Lu YM, Hwang WS, Yang JS, Chuang HC. Properties of nickel oxide thin films deposited by RF reactive magnetron sputtering. Thin Solid Films. 2002;420:54. doi:10.1016/S0040-6090(02)00654-5

Sato H, Minami T, Takata S, Yamada T. Transparent conducting p-type NiO thin films prepared by magnetron sputtering.Thin Solid Films. 1993;236:27. doi:10.1016/0040-6090(93)90636-4

Pejova B, Kocareva T, Najdoski M, Grozdanov I. Appl Surf Sci. 2000;165:271. doi:10.1016/S0169-4332(00)00377-9

Sreemany M, Sen S. A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO2 thin films. Mater Chem Phys. 2004;83:169–177. doi:10.1016/j.matchemphys.2003.09.030

Anderson O, Bange K, Ottermann C. In: Bach H, Krause D, editors. Thin films on glass. Berlin: Springer-Verlag, 1997; p. 137.

Meng LJ, Dos Santos MP. Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures. Thin Solid Films. 1993;226:22. doi:10.1016/0040-6090(93)90200-9

Aarick J, Aidla A, Kiisller A-A, Uustare T, Sammelselg V. Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition. Thin Solid Films. 1997;305:270. doi:10.1016/S0040-6090(97)00135-1

Sujak-Cyrul B, Kolodka B, Misiewics J, Pawlikowski M. Intraband and interband optical transitions in Zn3 AS2 . J Phys Chem Solids. 1982;43(11):1045–1051. doi:10.1016/0022-3697(82)90220-7



Reader Comments

Before posting a comment, read our privacy policy.

Post a comment (login required)

 

Crossref Citations

1. Physical & Electrochemical Properties of Green Synthesized Bunsenite NiO Nanoparticles via Extracts
B.T. Sone, X.G. Fuku, M. Maaza
International Journal of Electrochemical Science  vol: 11  issue: 10  first page: 8204  year: 2016  
doi: 10.20964/2016.10.17