
Monin-Obukhov similarity theory (MOST) and application
to surface layer scintillometry

The atmospheric surface layer is also known as the constant
flux layer because, under the assumption of steady-state and
horizontal homogeneous conditions, the vertical turbulent flux
is nearly constant with height, with variations of less than 10%.35

Unlike the EC and BREB methods, which do not invoke MOST,
empirical MOST relations are used to convert the scintillometer
measurements of the Cn

2 and l0 into H and τ.33 Validity of MOST
and the determination of the effective measurement height
therefore dominate the applicability of flux calculation from
optically-determined Cn

2 and lo .
Dissipation rate of the turbulent kinetic energy ε (m2 s–3) can be

deduced from lo and the definition of Kolmogorov70 scale η:
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where β1 is the Obukhov-Corrsin constant (= 0.86), Pr the
Prandtl number (= 0.72) and the kinematic viscosity of air
(m2 s–1):66

ν = [1.718 + 0.0049(T – 273.15)] × 10–5/ρ , (3)

where T is the air temperature (K) and ρ the density of air
(kg m–3).

The application of MOST to surface layer scintillometer
measurements adopted by Thiermann and Grassl10 is followed.
A simultaneous optically-measured inner scale length lo is
related to the dissipation rate of turbulent kinetic energy ε and
one assumes that ε obeys MOST. A fixed CT

2 and lo then corre-
spond to a set of values for H and τ. According to MOST, for a
constant flux, the structure of turbulence is determined by the
following scaling parameters (Table 1):30

u∗ = τ ρ/ (4)
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where cp is the specific heat capacity of air at constant pressure
(J kg–1 K–1).

According to MOST, CT
2 and ε are made dimensionless by

respectively scaling them with the temperature scale T* and
friction velocity u*, and are universal functions of the stability
parameter ζ = (z – d)/L, with the Obukhov length L defined by:
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where k is the von Kármán constant (0.41) and g is the accelera-
tion due to gravity (9.81 m s–2)6.

From MOST:
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Various forms for the stability functions, f(ζ) and g(ζ), have
been proposed: Thiermann and Grassl10, Hill et al.23, Wyngaard38,
de Bruin et al.71 and others. The functions used for stable and un-
stable conditions, as proposed by Thiermann and Grassl10 and
which were used to derive H by the Scintec66 SLSRUN software
developed for the SLS used, were found adequate.4

Thiermann and Grassl10 give the following semi-empirical
expressions for f(ζ) and g(ζ): for ζ > 0 (stable condition)

f C z d TT( ) ( ) ( )/ /ζ β ζ ζ= − = − +∗
− −2 2 3 2

1
2 1 34 1 7 20 (9)

and

g k z d u( ) ( ) ( ) /ζ ε ζ ζ= − = − +∗
− −3 2 1 21 4 16 (10)

and for ζ < 0 (unstable condition)

f C z d TT( ) ( ) ( )/ /ζ β ζ ζ= − = − +∗
− −2 2 3 2

1
2 1 34 1 7 75 (11)

g k z d u( ) ( ) ( )ζ ε ζ ζ= − = − −∗
− −3 11 3 , (12)

where β1 = 0.86 is the Obukhov-Corrsin constant.
Hill et al.,23 on the other hand, proposed that for unstable

atmospheric conditions for which ζ < 0:

f C z d TT( ) ( ) . ( )/ /ζ ζ= − = +∗
− −2 2 3 2 1 38 1 1 15 . (13)

Equations 9 and 10 for stable conditions and Equations 11
and 12 for unstable conditions can be solved for H and τ using a
numerical iterative scheme to obtain u* and T* using the defini-
tion of L (Equation 6). Sensible heat flux H and momentum flux τ
are finally obtained from Equations 4 and 5.

Scintillometry and the role of the refractive index
structure constant

The graph of the refractive index spectrum is shown in Fig. 172.
According to Kolmogorov70, in the inertial sub-range, energy
neither enters the system nor is dissipated. It is merely trans-
ferred at rate ε where ε is the dissipation rate of turbulent kinetic
energy (m2 s–3) (Table 1) from smaller wave numbers to larger
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Fig. 1. The energy spectrum E(κ) associated with turbulence for a range of wave
numbers κ for the various boundary layer flows (taken from Kaimal and Finnigan72):
A corresponds to regions of energy production, B to the inertial sub-range of
turbulence and C to the dissipation range where kinetic energy is converted to
internal energy acting to raise the temperature of the fluid.The integral length scale
of turbulence is denoted Λ and η denotes the Kolmogorov70 microscale of length.



wave numbers, where it is dissipated. As a result, the three-
dimensional spectral density function, Φn(κ), where κ is the
wave number κ = 2π/l associated with the spectrum of eddies of
size l, would depend on the viscous dissipation rate ε and the
turbulent spatial wave number κ only.

Kolmogorov’s first hypothesis70,72 applies in the range deter-
mined by the inequality l0 << 1 m < µ (called the equilibrium
range), where µ is called the Kolmogorov microscale (Fig. 1). The
Kolmogorov microscale defines the size of eddies dissipating the
kinetic energy. The second hypothesis is for sufficiently large
Reynolds numbers. The sub-range defined by η < 1 m<< Λ, is
called the inertial sub-range, where Λ is the outer scale length
and is approximately equal to the scintillometer measurement
height and η is the Taylor microscale (which marks where the
viscous effect becomes significant) and is dominated by inertial
forces whose actions redistribute the energy across the turbulent
spectrum (Fig. 1).

Scintillometry theory and determination of H
The energy spectrum of turbulence (Fig. 1), representing the

scale of turbulence from the so-called energy-containing range

through to the inertial sub-range of turbulence to the dissipation
range,73 may be defined through the use of a wave number for
turbulence. The turbulent wave number κ (m–1) range is defined
by the corresponding range in eddy size values experienced in
the atmosphere with the spectrum of wave numbers occurring
due to the numerous eddies of variable size.73 These eddy sizes
are indicative of the turbulence regime of the atmosphere and
may impact on the transmission of electromagnetic radiation.

The variance of the natural logarithm of the intensity incident
at the receiver is related to Cn

2 defined as:9
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where n(r) is the refractive index at location r and r12 (m) is a
distance lying between two length scales r1 and r2 characteristic
of the turbulence.74 The changes in the refractive index of air
caused by air temperature fluctuations are usually random
functions in both time and space. Thus, turbulence intensity of
the refractive index of air n(r, t) can only be determined by the
average of certain quantities, such as Cn

2 . Assuming the random

2

Table 1. Summary of meteorological parameters estimated or required by the various measurement methods and MOST.

Parameter Symbol (unit) Description

Refractive index structure parameter Cn
2 2 3( )/m− Spatial statistics used as a measure of the path-averaged strength of refractive

turbulence, or simply a measure of the fluctuations in refractive index of air caused
mainly by air temperature variations.

Momentum flux density τ (Pa) The turbulent horizontal wind stress in the surface boundary layer.

Bowen ratio β (no unit) The ratio of sensible heat flux to that of latent energy flux.

Structure function parameter of temperature CT
2 2 2 3( )/K m− A measure of the structure of air temperature fluctuations (determined from Cn

2).

Dissipation rate of turbulent kinetic energy ε (m2 s–3) Refers to the rate of change in turbulent kinetic energy (TKE) per unit mass of fluid, due
to viscous effects.

Fresnel zone F (m) F L= ×λ beam , where λ is the wavelength of the transmitter beam and Lbeam the beam
path length. The most optically-active eddies have sizes of the order of the Fresnel zone.

Inner scale length lo (mm) The smallest diameter of the occurring eddies.

Friction velocity u
*

(m s–1) A basic wind speed scaling parameter equal to the square root of τ/ρ where ρ is
the air density.

Obukhov length L (m) The height above the zero-plane displacement height d at which free convection
dominates over forced convection.

Zero-plane displacement height d (m) A height scale in turbulent flow over roughness elements such as vegetation above the
ground at which zero wind speed is achieved as a result of the flow obstacles. It is
generally approximated as 2/3 of the average height of the obstacles. The displacement
height represents the mean height where momentum is absorbed by the canopy.

Temperature scale of turbulence T* (K) A term for the temperature that an air parcel at a height would potentially have if brought
adiabatically (i.e. without thermal contact with the surrounding air) to a given height, i.e.
the effective temperature of an air parcel after removing the heat of the parcel
associated solely with compression.

Table 2. Meteorological parameters determined for selected different methods.

Meteorological parameters

Method used for determination of meteorological parameter H u
*

ε τ LE residual = LE CO2 flux (Fc)
Rnet – H – S

LAS or XLAS ✓ – – – + – –

SLS or multi-beam LAS ✓ ✓ ✓ ✓ + – –

1-Dimensional EC ✓ – – – + – –

3-Dimensional EC ✓ ✓ – ✓ + – –

CO2 sensor and 3-D sonic (EC) ✓ ✓ – ✓ – – ✓

H2O sensor and 3-D sonic (EC) ✓ ✓ – ✓ + ✓ –

BR ✓ – – – ✓ ✓ ✓

SR (high frequency air temperature measurements) ✓ – – – + – –

SR (high frequency specific humidity measurements) – – – – – ✓ –

✓, Meteorological parameter that can be measured using the method.
–, Meteorological parameter that cannot be measured or determined using the method.
+, Meteorological parameter that can be estimated if net irradiance Rnet and soil heat flux S are known.



process generating the changes in refractive index is isotropic,
then C r C rn n

2 2( ) | |= ⋅ .28,75

The distance between the transmitter and the receiver can
range from tens to thousands of metres depending on the type
of instrument. Different types of radiation sources can be used.
The beam wavelength for the different scintillometer types is
also different, with the LAS and XLAS having a beam wavelength
of 930 nm, within 5 nm. The displaced-beam surface layer
scintillometer, the SLS, emits two parallel and differently polarised
laser beams with the separating distance, dSLS. The commercial
SLS unit, the SLS40-A uses a class 3a type laser at a wavelength
λ of 670 nm (which is similar to that of an ordinary laser pointer),
a beam displacement distance, dSLS of 2.7 mm and a detector
diameter, DSLS of 2.5 mm. With this instrument the beam of one
source is split into two parallel, displaced beams with orthogonal
polarisations. By determining both the variances of the logarithm
of the amplitude of the two beams, σ1

2 and σ2
2 , and the covariance

of the two beams, σ12
2 , lo andCn

2 can be obtained.66 At the receiver,
usually located 50 m to 250 m away from the transmitter, the two
beams reach two separate detectors. The SLS set up is shown
(Fig. 2) with a close-up of the transmitter, receiver, junction box
and signal processing unit of the SLS (Fig. 3).

The covariance of the logarithm of the amplitude of the
received radiation is given by:10
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Equation 15 is valid for σ12
2 0 3< . , corresponding to weak

scattering. If the scattering is not weak, then the measured σ12
2 is

less than that determined from Equation 15 and saturation is
said to occur.76 Due to this fact, the maximum path length for the
SLS is usually limited to 250 m. To overcome the saturation
problem, which limits the SLS measurements to a beam path
distance of 250 m, the beam path length should be decreased or
beam height position increased.3,60 Otherwise a LAS would be

the option for obtaining H over longer path lengths, e.g. 5 km to
10 km.77

The functional dependence of the covariance σ12
2 in Equation

15 includes two wave numbers – the optical wave number K
(m–1) for the SLS beam, where K = 2π/λ, and where λ = 670 nm
for the SLS and wave number defined as κ = 2π/l, corresponding
to the spectrum of eddy sizes that the beam encounters where l is
eddy size. The functional dependence of Equation 15 also includes
the function Φn(κ) corresponding to the three-dimensional spec-
trum of refractive index inhomogeneities caused by the
interaction of changes in air temperature with refractive index,
SLS beam displacement distance dSLS, two Bessel functions Jo and
J1 of the first kind, r the distance along the beam measured from
the transmitter with Lbeam corresponding to the beam path
length, and DSLS the aperture diameter of the scintillometer
detectors. As presented by Lawrence and Strohbehn78 and
pointed out by Thiermann and Grassl10, substituting dSLS = 0 m
corresponding to a single beam into Equation 15, provides the
expression for the variances σ1

2 and σ2
2 at each of the single detector

pairs.
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Fig. 3. The SLS (a) transmitter, (b) receiver, (c) switch box and (d) signal processing unit.

Fig. 2. The surface layer scintillometer set up showing the transmitter and receiver
as indicated.


