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The production and use of addictive stimulants has been a major problem in South Africa. 
Although research has shown increased demand for drug abuse treatment, the actual size of 
the drug-abusing population remains unknown. Thus the prevalence of drug abuse requires 
estimation through available tools. Many questions remain unanswered with regard to 
interventions, new cases of substance abuse and relapse in recovering persons. A six-state 
compartmental model including a core and non-core group, with fast and slow progression to 
addiction, was formulated with the aim of qualitatively investigating the dynamics of substance 
abuse and predicting drug abuse trends. The analysis of the model was presented in terms of 
the substance abuse epidemic threshold R0. Numerical simulations were performed to fit the 
model to available data for methamphetamine use in the Western Cape and to determine the 
role played by some key parameters. The model was also fitted to data on methamphetamine 
users who enter rehabilitation using the least squares curve fitting method. It was shown that 
the model exhibits a backward bifurcation where a stable drug-free equilibrium coexists with 
a stable drug-persistent equilibrium for a certain defined range of values of R0. The stabilities 
of the model equilibria were ascertained and persistence conditions established. It was found 
that it is not sufficient to reduce R0 below unit to control the substance abuse epidemic. The 
reproduction number should be brought below a determined threshold, R0

c. The results also 
suggested that the substance abuse epidemic can be reduced by intervention programmes 
targeted at light drug users and by increasing the uptake rate into treatment for those 
addicted. Projected trends showed a steady decline in the prevalence of methamphetamine 
abuse until 2015.

© 2012. The Authors.
Licensee: AOSIS 
OpenJournals. This work
is licensed under the
Creative Commons
Attribution License.

Introduction
Substance abuse remains a major global health and social problem.1 The production and abuse 
of addictive stimulants has increased dramatically in South Africa in the last decade and, in 
particular, there has been an increase in demand for treatment services for first-time admissions 
in recent years.2 Not only has this increase impacted on costs to the public health system, 
but other epidemics, such as HIV, have also increased significantly. For example, in the 2005 
antenatal survey, the Western Cape Province of South Africa had the highest increase of new 
HIV infections, from 13.1% in 2003 to 15.7% in 2005, compared to other provinces.3 Therefore, 
the development of comprehensive, effective and sustainable strategies for the prevention 
and management of substance abuse requires a multisectoral approach, which should involve 
health-care professionals, policymakers, psychiatrists and researchers. The array of possible 
interventions includes primary prevention (to ensure that substance abuse does not develop), 
secondary intervention (involving early identification and effective treatment in order to prevent 
escalation) and tertiary intervention (to reduce substance-related harm). In South Africa, data 
is collected on admission for treatment for drug abuse every 6 months as a regular monitoring 
system for drug use trends. Treatment or rehabilitation services for substance abuse problems 
have not kept pace with the increase in demand for treatment and the treatment programmes 
do not operate on evidence-based treatment models.4 It is thus important to monitor drug use 
patterns and predict trends over time. 
 
Many questions remain unanswered as to the prevalence of substance abuse in South Africa, as 
well as how the implications of drug use, especially those relating to disease burden, health-care 
demands and risky sexual behaviour can be quantified. Quantifying the implications of substance 
abuse and monitoring substance abuse is complex and is usually based on incomplete data, 
because the use and possession of drugs are criminal offences. The collected data is thus shrouded 
with inconsistencies arising from under-reporting when standard methods of data collection 
such as household surveys and case findings have been used. There is therefore still a need to 
understand the problem, measure drug use trends, design appropriate intervention measures 
and evaluate the success of these interventions.4,5 It is at this stage that mathematical models 
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become useful. Mathematical models can help in designing 
interventions, evaluating their success and predicting drug 
use trends.6,7

 
The similarities between the spread of substance abuse and 
infectious diseases has been pointed out by a number of 
researchers.7,8,9,10,11,12,13,14,15 Substance abuse is obviously not 
communicated as an organic agent but as a kind of socially 
acceptable innovative practice by those on drugs to those who 
are susceptible through interactions. The epidemiological 
concepts of incidence, prevalence and the reproduction 
number become valuable in studying substance abuse.13,15 
Recent models on drug abuse include the work of Mulone 
and Straughan8, White and Comiskey13, Burattini et al.14, 
Nyabadza and Hove-Musekwa15. In these models, the rate 
of generation of new initiates was dependent on contact 
between non-drug users and drug users. In this article, unlike 
in the cited work, the total population was divided into two 
groups: the core group NC and the non-core group NP. The 
core group comprises individuals who are at risk of becoming 
drug users and cause others to become drug users (they can 
also be referred to as the active group). The non-core group 
is the non-active subgroup of the population which acts as a 
source of individuals to the core group. The idea of core and 
non-core groups has been used in the modelling of sexually 
transmitted infections (for example see Hadeler and Castillo-
Chavez16 and the references cited therein). The categorisation 
of individuals into core and non-core groups helps in disease 
control and management strategies.

We extended the compartmental model presented by 
Nyabadza and Hove-Musekwa15, which provided a structure 
in which numbers of individuals in each compartment can 
be tracked in time as relationships between compartments, 
described in mathematical terms, evolve. Our aim was 
to qualitatively study the dynamics of a substance abuse 
epidemic in a scenario where the population is subdivided 
into a core group 

 
NC  and a non-core group  NP   in the presence 

of treatment. We also aimed to show the usefulness of the 
model in predicting the prevalence of methamphetamine 
abuse, which is difficult to determine using ordinary data 
collection methods. We focused on stimulants such as 
methamphetamine as the substance of abuse. Unlike in 
Nyabadza and Hove-Musekwa15, we allowed for slow and 
fast progression of potential substance users to addiction 
and a cycle of light and hard drug use. ‘Light drug users’ 
refers to individuals who are in their initial phase of drug 
use, whereas ‘hard drug users’ represent individuals who 
would have reached a phase of problematic drug use, usually 
characterised by addiction. We also included permanent 
quitters or individuals in remission, to allow for those 
individuals who permanently stop using drugs, as well as 
reversion or relapse, which is synonymous to re-infection in 
the model by Nyabadza and Hove-Musekwa15. Relapse was 
considered only for those who were under treatment; this 
consideration was necessitated by the fact that the treatment 

does not involve isolation and individuals remain in the 
community during the treatment programme.

The model and its basic properties
Model formulation
We formulated a mathematical model of substance abuse. 
The adult human population was divided into two groups: 
the core group NC and the non-core group NP. The core 
group 

 
NC was further subdivided into five different classes: 

susceptibles S(t), light drug users UL(t), hard drug users 
UH(t) , drug users in treatment UT(t) and permanent quitters 
Q (t) at any time t, such that the total population was given 
by:

[Eqn 1]

and

                             [Eqn 2]

We diagrammatically represent the flow of individuals from 
one class to another in Figure 1.

The movement of individuals into and out of each class 
can be described based on the model diagram. The spread 
of substance abuse is therefore modelled like the spread 
of an infectious disease. Susceptibles increase as a result 
of recruitment of individuals from the non-core class 
(NP ) at a rate proportional to the number of individuals in 
the non-core group so that πNP is the number of individuals 
recruited. We assumed that the susceptibles can become drug 
users through contact with active drug users in classes UL 
and UH. A fraction θ of new initiates were assumed to become 
hard drug users and enter the class UH whilst the remainder 
were assumed to become light drug users. We assumed a 
mass action contact function so that the force of infection is 
given by

                                                                                          
[Eqn 3]

where β is the transmission parameter and η is the relative 
initiation ability of hard drug users when compared to light 
drug users. Thus in each time unit, a susceptible individual 
has on average β(UL + ηUH) contacts that would suffice for 
initiation into drug use. The assumption was that hard drug 
users have a lower capability of generating new drug users 
than light drug users by a factor η, such that  0 ˂ η ˂ 1. This 
assumption is because hard drug users manifest ill effects 
of substance abuse and some may have been using drugs 
for a long time and may be older and socially distant from 
potential recruits, who are usually youths. The population 
of light drug users is increased by a proportion (1 – θ) of 
those who are recruited into drug use and also when hard 
users revert to light drug use at a rate ψ. The population is 
decreased when light drug users become hard drug users 
at a rate σ and when they quit using drugs at a rate ρ2. The 
population of hard drug users is generated by a proportion  
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N(t) = NP(t) + NC(t) 

NC (t) = S(t) + UL(t) + UH(t) + UT(t) + Q (t).

λ = β(UL + ηUH)
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 NC(0) ˃  πNP              
                  μ        

θ of susceptibles upon recruitment into drug use, when light 
drug users become hard drug users at a rate σ and when 
drug users in treatment revert to hard drug use at a rate r. 
The population of hard drug users is decreased by removals 
that are related to hard drug use at a rate δ1 and when hard 
drug users enter treatment at a rate γ. The removal rate δ1  
models deaths and removals of individuals (e.g. as a result of 
imprisonment) that are drug related. Drug users in treatment 
are generated by hard drug users who start treatment at a 
rate γ. This population is decreased by removals at a rate 
δ2, when those in treatment become hard drug users at 
a rate r and when they permanently quit using drugs at a
rate ρ1. The population of permanent quitters is increased 
when light drug users permanently quit using drugs at a 
rate ρ2, as well as when drug users in treatment quit using 
drugs permanently at a rate ρ1. We assumed that individuals 
in each class die naturally at a rate μ. The definition of each 
parameter is given in Table 1.

Based on the model assumptions, the model diagram 
and Table 1, we have the following system of differential 
equations:

with initial conditions  

Basic properties
Invariant region
Because the model monitors changes in the human population, 
the variables and the parameters are assumed to be positive 
for all t ≥ 0.  [System 1] will therefore be analysed in a suitable 
feasible region G of biological interest. The following lemma 
applies to the region that [System 1] is restricted to:

Lemma 1
The feasible region G defined by

[Eqn 4]

                               with initial conditions
                 is positively invariant and attracting with respect to
[System 1] for all t > 0. 

Proof: Adding the equations of [System 1] we obtain

                                                                                                                 
[Eqn 5]

The solution NC(t)  of the differential equation, [Eqn 5], has the

following  property                                                          where 

NC(0) represents the sum of the initial values of the variables. 

As t → ∞,                       . So if                       then                              

This means that         is the upper bound of NC. On the other 

hand, if           , then NC(t) will decrease to      as 

t → ∞. This means that if            , then the solution

            enters G or approaches it 
asymptotically. Hence, G is positively invariant under the 
flow induced by [System 1]. Thus in G, [System 1] is well-
posed mathematically. Hence, it is sufficient to study the 
dynamics of the model in G. 

Positivity of solutions
For [System 1], it is important to prove that all the state 
variables remain non-negative so that the solutions of 
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TABLE 1: Parameter symbols used in the model and their descriptions.
Parameter Description
π The recruitment rate
σ The rate at which light drug users become hard 

drug users
r The rate at which drug users in treatment revert to hard drug use
ψ The rate at which hard drug users revert to light drug use
η The relative infectivity of hard drug users when compared to 

light drug users
γ The treatment rate 
θ The proportion of susceptibles recruited into hard drug use
β The transmission parameter
δ2 Additional removals of drug users in rehabilitation 
δ1 Additional removals of hard drug users  
μ Natural mortality rate
ρ1 The rate at which drug users in treatment permanently quit 

using drugs 
ρ2 The rate at which light drug users permanently quit using drugs 

FIGURE 1: Transfer diagram of the substance abuse model.
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[System 1]

G = {S(t), UL(t), UH(t), UT(t), Q(t) ϵ R+
5: NC ≤ 

πNP  },                                                                           μ

dNC  = πNP – μNC – δ1UH – δ2UT, dt

≤ πNP – μNC.

0 ≤ NC(t) ≤ NC(0)e-μt + πNP  [1 – e-μt]
                                      

μ

0 ≤ NC ≤  πNP      
                 μ

NC(0) ≤ πNP  
               μ

lim NC(t) = πNP
 t →∞

                         

μ
  
.

πNP

  μ 
πNP

  μ

S(0) ≥ 0, UL(0) ≥ 0, UH(0) ≥ 0, UT(0) ≥ 0, 

 NC(0) ˃ πNP         
                   μ    

(S(t), UL(t), UH(t), UT(t), Q(t))

Q(0) ≥ 0,   
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(t)(t)S      exp[μt + ʃ    
0

t λ(s)ds]S     exp[μt + ʃ    0
t 
λ(s)ds]

– S(0) ≥  ʃ    0
t
 πNP exp[μt +

    
 ʃ    0

t 
λ(w)dw] dt, so that

[System 1] with positive initial conditions will remain 
positive for all  t > 0. We thus give Lemma 2.

Lemma 2
Given that the initial conditions of [System 1] are: 
S(0) > 0, UL(0) > 0, UH(0) > 0, UT(0) > 0, Q(0) > 0, the solutions 
S(t), UL(t), UH(t), UT(t)  and Q(t) are non-negative for all t > 0.

Proof: Assume that
  = sup{t > 0: S > 0, UL > 0, UH  > 0,UT  > 0, Q > 0} ϵ [0, t].Thus t  ˃ 0      
and it follows from the first equation of [System 1] that 
                                . We thus have

Hence

                                                                                  

                                                     

From the second equation of [System 1], we have

UL(t) ≥ UL(0)exp – (μ + σ + ρ2)t > 0.

Similarly, it can be shown that 
UH(t) > 0, UT(t) > 0 and Q(t) > 0 for all t > 0. 

Model equilibria and stability 
analysis
Local stability of the drug-free equilibrium
[System 1] has a drug-free equilibrium given by:

  

Following van den Driessche and Watmough17, the linear 
stability of E0 can be established using the next generation 
matrix method in [System 1]. Using the notations in van 
den Driessche and Watmough17 for our system, the matrices 
for the new infection terms (F) and transition terms (V ) are, 
respectively, given by: 
                                                        

 and

where b1 = μ + σ + ρ2  and b2 = μ + γ + ψ + δ1. It follows then 
that the basic reproduction number R0 is given by the spectral 
radius of FV-1 where V-1 denotes the inverse of V . 
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t

dS = πNP – (μ + λ)Sdt

dUL 
≥ – (μ + σ + ρ2)UL, dt

q
1
= σψ  

˂ 1. 
       

b1b2

λ* = β(UL
* + ηUH

*)

Q* = πλ*NP
*{rλ*+ μ + δ2 + ρ1}ρ2 + γρ1[σ(1 – θ) + θ(μ + σ + ρ2)],

Ωμ

UT
* = πγλ*NP

* (θμ + σ + θρ2),
Ω

UH
* = 

πNP
*
λ

*
(rλ

*
+ μ + δ2 +ρ1)[σ(1 – θ) + θ(μ + σ + ρ2)],

               Ω

Ω = (λ* + μ)(μ + σ + ρ2){(rλ* + μ + δ2 + ρ1)[μ + ψ(μ + ρ2)
+ δ1] + γ(μ + δ2 + ρ1)}.

                                               
πNP  , 0, 0, 0, 0E

0 
= (S*, UL

*, UH
*, UT

*, Q*) =     μ                    .⌠⌠ ⌠⌠

UL
* = 

πNP
*
λ

*{rλ *θψ + [θψ + γ(1– θ)]{μ + δ2 +ρ1}

                                                                                                                             Ω

+ (1 – θ) (μ + ψ + δ1)(rλ * + μ + δ2 +  ρ1)}, 
                                     Ω

β(1 – θ )πNP        β(1 – θ )ηπNP
        μ                      μ

       
βθπNP                         βθηπNP

              μ                      μ

⌠

⌠ ⌠

⌠    b1
    _ψ 

   –σ   b2      

,⌠ ⌠ ⌠⌠

              S * = 
πNP*

             
λ + μ  

,

 d   [S(t)exp{μt + ʃ              0 
t
λ(s)ds}] ≥ πNPexp[μt + ʃ              0 

t
λ(s)ds].dt 

[Eqn 6]

where        R0 in this case represents the average 
number of secondary cases that one drug user can generate 
during his or her duration of drug use in a population 
of potential drug users. The expression of R0 is the sum of 
two terms representing the contribution of light drug users 
and hard drug users. Hence, using Theorem 2 of van den 
Driessche and Watmough17, we establish Theorem 1.

Theorem 1
The drug-free equilibrium point, E0 , is locally asymptotically 
stable if R0 ˂ 1, and unstable if R0 ˂ 1.

We now illustrate the above theorem numerically. We 
performed numerical simulations using a fourth-order 
Runge–Kutta scheme in Matlab.18 The aim was to verify 
the analytical results obtained on the stability of [System 
1]. We first established the parameter values to be used 
in the simulations. For the purpose of these simulations, 
we considered hypothetical populations of one million 
individuals for the core group and four million individuals 
for the non-core group. We arbitrarily set the initial conditions 
for the system for illustrative purposes.

We considered the case when R0 ˂ 1, in particular when 
R0 = 0.6541. For varying initial conditions when R0 = 0.6541, 
the dynamics of drug users is represented by Figure 2. These 
results show that the population of drug users declines to 
zero, that is, it approaches the drug-free equilibrium. The 
results also show that the drug-free equilibrium is locally 
asymptotically stable whenever R0 ˂ 1. These results support 
Theorem 1 on the stability of a drug-free equilibrium.

Drug-persistent equilibrium
In order to determine the drug-persistent equilibrium 
of [System 1], we set the equations equal to zero. Let  
E1 = (S*, UL

*, UH
*, UT

*, Q) represent the drug-persistent 
equilibrium and let 
                                                                                                       

 [Eqn 7]

be the force of infection at steady state E1. In terms of λ*, the 
components of E1 are

 

                                                                                                     
[Eqn 8]

where                                                                                     
                          and Np

*= Np. By substituting [Eqn 8] into 

S(t) ≥ S(0)exp[–  μt +ʃ    0tλ(s)ds ]        
+ exp[–  μt +ʃ    0tλ(s)ds ][ ʃ    0t πNP exp﴾μt + ʃ    0t λ(w)dw﴿dt ] ˃ 0.

⌠⌠ ⌠⌠

⌠⌠ ⌠⌠

R0=
 πN Pβ    [θψ  

+
 (1 – θ)  

+η { σ (1 – θ)  
+

  θ  }]         μ(1 – q1)   b1b2            b1                                             b1b2                      b2            

,

We thus have
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[Eqn 7], and simplifying, it can be shown, after some tedious 
algebraic manipulations, that the non-zero equilibria of the 
model satisfy the following quadratic equation in terms of λ*:

                               ,                                                                [Eqn 9]        

where

 

Thus, the positive drug-persistent equilibria of [System 1] 
are obtained by solving for λ* from the quadratic equation, 
[Eqn 9], and substituting the results into the expressions 
in [Eqn 8]. Clearly, the coefficient a0 of [Eqn 9] is always 
negative and

 

We thus produce Theorem 2 on the existence of the drug-
persistent equilibrium.

Theorem 2
[System 1] has four cases:

1. a unique drug-persistent equilibrium if  R0 ˃ 1
2. a unique drug-persistent equilibrium if b0 ˃ 0 and 
     c0 = 0 or b0

2 – 4a0c0

3. two drug-persistent equilibria if b0 ˃ 0 and R0 ˂ 1
4. no drug-persistent equilibrium otherwise.

It is clear from Theorem 2 Case 1 that the model has a unique 
drug-persistent equilibrium whenever R0 ˃ 1. Further, Case 3 
suggests the possibility of a backward bifurcation. To check 
for this, we set the discriminant zero and the result solved for 
the critical value of R0 , giving

[Eqn 10]                                  

where R0
c is a critical value of R0 , below which no drug-

persistent equilibrium exists. (For an effective drug abuse 
control, the reproduction number should be brought below 
R0

c. The condition R0 ˂  1 is not sufficient for a complete 
reversal of the substance abuse epidemic described by 
[System 1].)

Backward bifurcation
The phenomenon of backward bifurcation has been 
observed in many epidemiological models such as models 
for tuberculosis with exogenous re-infection,19,20,21 vector 
disease models,22 susceptible-infected-susceptible models 
with saturation of recoveries,23,24 and in particular, models 
for drug abuse.13,15 The phenomenon has epidemiological 
significance whereby the classical requirement of 
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FIGURE 2: Time series plots showing the number of (a) light drug users, (b) hard 
drug users and (c) drug users in treatment for R0 = 0.6541, with various initial 
conditions. 
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R0 ˂ 1 is, although necessary, no longer sufficient to end the 
substance abuse epidemic. Theorem 2 can be illustrated 
in the bifurcation diagram shown as Figure 3. Figure 3 is 
reminiscent of a standard backward bifurcation diagram (see 
for instance Dushoff25). We emphasise here that the parameter 
values chosen are for illustrative purposes only and may not 
necessarily reflect a real substance abuse phenomenon.
 
The simulation results depicted in Figure 3 show 
that [System 1] only has the drug-free equilibrium 
when  R0 ˂ R0

c ˂ 1, two drug-persistent equilibria when 
R0 ˂ R0

c ˂ 1 and one drug-persistent equilibrium when 
R0  ˃ 1,

 
as shown by Regions A, B and C, respectively. In 

Region A, the drug-free equilibrium is locally asymptotically 
stable, whilst in Region B one of the drug-persistent equilibria 
is stable and the other is unstable. This result clearly shows 
the coexistence of two stable equilibria when R0 ˂ R0

c ˂ 1, 
confirming that [System 1] exhibits backward bifurcation. 
In Region C, the drug-persistent equilibrium is stable. The 
results shown in Figure 3 are summarised in Table 2. 

The simulations were in agreement with Theorem 2. The 
time series plots shown in Figure 4, for different initial 
conditions, also reflect the existence of multiple steady states. 

The parameter values are as given for Figure 3 with β  values 
being within each of Regions A, B and C. It can be seen that, 
irrespective of the initial conditions, the force of infection 
stabilises to a drug-free equilibrium in Region A, one drug-
persistent equilibrium and one drug-free equilibrium in 
Region B and to a drug-persistent equilibrium in Region C. 
Lemma 3 is thus established.

Lemma 3
[System 1] undergoes backward bifurcation when Case 3 of 
Theorem 2 holds and R0

C < R0 < 1.

TABLE 2: A numerical summary of the backward bifurcation shown in Figure 
3 with the corresponding reproduction number (R0) and the local stability of 
equilibria for each of Regions A, B and C.
Region Transmission 

parameter
R0 Type of steady

states
Stability of steady state

A < 1.453 x 10-7 < 0.961 A drug-free 
equilibrium

Stable

B 1.453 x 10-7 
–  1.512 x 10-7

0.961 – 1 A drug-free 
and two drug-
persistent 
equilibria

The drug-free and one drug-
persistent equilibrium are 
stable whilst the other drug-
persistent equilibrium 
is unstable

C < 1.512 x 10-7 > 1 A drug-free 
and one drug-
persistent 
equilibrium

The drug-free equilibrium 
is unstable whilst the drug-
persistent equilibrium is 
stable
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FIGURE 3: The model for substance abuse shows a backward bifurcation as the 
transmission parameter, β, is varied from 1.3 × 10-7 to 1.65 × 10–7. 
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FIGURE 4: Time series plots using different initial conditions for the force of 
infection λ*. (a) In Region A of Figure 3 the drug-free equilibrium is stable with a 
transmission parameter, β = 1 ×10-7. (b) The drug-free equilibrium and one drug-
persistent equilibrium are stable in Region B for β = 1.499 × 10-7 and (c) there is 
a stable drug-persistent equilibrium in Region C with β = 1.7 ×10-7. 
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The role of relapse
One of the major problems relating to treatment for substance 
abuse is the relapse of those under treatment into hard drug 
use. We considered the situation in which there is no relapse 
to hard drug use for the sake of comparison with the case in 
which relapse occurs. In this situation we considered the case 
of r = 0, such that [System 1] reduces to

[System 2] has the same drug-free equilibrium point as 
[System 1]. The drug-persistent equilibrium can be obtained 
by considering quadratic equation, [Eqn 9], when r = 0. The 
coefficients a0, b0 and c0 in [Eqn 9] reduce to:

 
In this case, the force of infection at the steady state is 
λ*  = μ[R0 – 1], which is positive when R0  ˃ 1. Then one can 
show that the drug-persistent equilibrium
 

exists and is unique. S*, UL
*, UH

*, UT * and Q* are given by:

 

with Np
*= Np and 

Hence, in this case (with r = 0), no drug-persistent 
equilibrium exists whenever R0 < 1. It follows that, owing 
to the absence of multiple drug-persistent equilibria for 
[System 1] with  r = 0 and R0 < 1, a backward bifurcation is 
unlikely for [System 1] with r = 0 and R0 < 1. Figure 5 shows 
the contribution of the relapse rate r on the prevalence of 
drug use. In the presence of relapse, the prevalence of drug 
use is higher. It is important to note that when  r = 0, the ability 
of drug users not in treatment to recruit initiates from the 

susceptible population is the same as the ability to recruit 
from individuals in treatment.

Global stability of the drug-free equilibrium
The absence of multiple drug-persistent equilibria when  
r = 0, suggests that the drug-free equilibrium of [System 1] is 
globally asymptotically stable when R0 < 1. We thus produce 
Theorem 3.

Theorem 3
Consider [System 2] with r = 0. The drug-free equilibrium is 
globally asymptotically stable in G whenever R0 < 1.

Proof: Let us consider the following Lyapunov candidate 
function:

 
where α1  and α2  are positive constants to be determined. Its 
time derivative along the trajectories of [System 2] satisfies

              

[Eqn 11]

The constants α1  and α2  are chosen such that the coefficient 
of UH is equal to zero. Thus, one can easily show that 
α1 = b1 – βSθη and α2 = βη(1 – θ)S + ψ. 

Because S ≤ S*, after substituting α1 and α2 in [Eqn 11], we 
obtain V(t) ≤ b1b2(1 – q1)(1 – R0)UL. Thus, V(t) ≤ 0 when R0 ≤ 1. 

Furthermore V(t) = 0  when R0 = 1, that is, when UL = UH = UT
= Q = 0. By LaSalle’s invariance principle, the largest invariant 
set in G ,  contained in                                                   is 
reduced to the drug-free equilibrium. This pro
ves the global asymptotic stability of E0 in G (see Bhatia and 
Szegö26, Theorem 3.7.11, page 346).

 

dS  = πNP  – (μ + λ)S,dt 

dUH   =
 λSθ + σUL – (μ  + γ + ψ + δ1)UH,   dt

dUT  = γUH – (μ + ρ1 + δ2)UT,  dt
dQ 

= ρ2UL + ρ1UT – μQ.dt

a0 = 0,

b0 = 
       

– b1 b2 b3(1 – q1),
 c0 = – μb1 b2 b3(1 – q1)[1 – R0].

E1 = (S*, UL
*, UH

*, UT
*, Q*)

S*=   πNP
*  

,
       λ* + μ

UH
*= 

πNP
*λ* (μ + δ2 + ρ1)[σ (1 – θ) + θ (μ + σ + ρ2)],

                                         Π
  
UT

*= πγλ*NP
*(θμ + σ + θρ2 

),
                     Π

Q*=
 πλ*NP

*{μ + δ2 + ρ1}ρ2 +
 γρ1[σ(1 – θ ) + θ(μ + σ + ρ2 )],

                                               Πμ

π = (λ* + μ)(μ + σ + ρ2){(μ + δ2 + ρ1)[μ + ψ(μ + ρ2) + δ1
]
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FIGURE 5: The contribution of reversion rate on the prevalence of substance 
abuse. In the absence of reversion (when r = 0) the prevalence will be lower 
than when the rate of initiation is the same as the rate of reversion (when r = 1).

V(t) = α1UL + α2 UH.

V(t) = α1UL + α2UH ,

= [α1{β(1 – θ)S – b1} + α2{βSθ + σ}]UL + [α1{βη(1 – θ)S + ψ} 

+ α2{βηSθ – b2}]UH.

dUL  = λ(1 – θ)S + ψUH – (μ + ρ2 + σ)UL,
  
dt

1]      [System                                                
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[System 2]

UL
*=

 πNP
*λ*{[θψ + γ(1 – θ)]{μ + δ2 + ρ1}

                                     
Π

+
 (1 – θ)(μ + ψ + δ1)(μ + δ2 + ρ1)} ,  

Π

 + γ(μ + δ2 + ρ1)}. 

{(S, UT, UH, UT, Q)ϵƦ 5
5    |V(t) = 0},
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Local stability of the drug-persistent equilibrium 

We determined the stability of the drug-persistent 
equilibrium and further investigated the possibility of 
backward bifurcation as a result of the existence of multiple 
equilibria as indicated in Theorem 2 Case 3. The stability 
analysis of the drug-persistent equilibrium point required 
us to determine the eigenvalues of the Jacobian matrix 
evaluated at the drug-persistent equilibrium. As expressing 
drug-persistent equilibria explicitly is complicated for 
[System 1], the calculation of eigenvalues is mathematically 
cumbersome. So we used the centre manifold theory 
as presented by Castillo-Chavez and Song20. To apply 
this method, we first changed the variables of [System 1] 
such that S = x1, UL = x2, UH = x3, UT = x4 and 

 
Q = x5 with

            ,               ,              ,              ,             .

[System 1] then becomes

                                          [System 3]

We choose ϕ = β  as the bifurcation parameter. We thus equate 
R0 = 1 

 
and obtain

     

The Jacobian of [System 3] at drug-free equilibrium E0 when 
ϕ = β , is given by

 

We note that the Jacobian J(ϕ) of the linearised system has a 
simple zero eigenvalue. We can thus use the centre manifold 
theory to analyse the dynamics of [System 3]. The right 
eigenvector associated with zero eigenvalue is given by 
w = (w1, w2, w3, w4, w5)

T, where 
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and (.)T denotes a vector transpose. Further, J(ϕ) has a 
corresponding left eigenvector v = (v1, v2, v3, v4, v5)

T, where

 

and

 

We note that all the eigenvectors are positive except for 
w1 and the value of α is chosen such that v.w = 1. In order 
to establish the local stability of E1, we used Theorem 4 
proven in Castillo-Chavez and Song20 and adopted the use 
of a and b as in Castillo-Chavez and Song20. In particular, 
because v1 = v4 = v5 = 0,  

                                                                               , and

 

   

To compute the value of a and b, we first computed the non-
zero second-order partial derivatives of [System 3] at drug-
free equilibrium such that,

 

                               

and

  
                   

dx1
  = f1dt

dx2 = f2dt
dx3 = f3dt

dx4 = f4dt
dx5 = f5dt

f1 = πNP – μx1 – βx1(x2 + ηx3),
f2 = βx1(1 – θ)(x2 + ηx3) + ψx3 – b1x2,
f3 = βx1θ(x2 + ηx3) + σx2 + βrx4(x2 + ηx3) – b2x3,
f4 = γx3 – b3x4 – βrx4(x2 + ηx3),
f5 = ρ2 x2 + ρ1 x4 – μx5 .

ϕ =
                          μb1b2(1 – q1)

       πNP{ησ (1 – θ) + θψ + ηb1θ + b2 (1 – θ)}.                 

v = (v1, v2, v3, v4, v5)T,
v1 = 0,
v2 = v2 > 0, 

v3  =
           αb1{σψ(1 – θ) + b1[ησ(1 – θ) + θψ]}

       b1 b2θ(1 – q1) +σ[ησ(1 – θ) + θψ + ηb1θ + b2 (1 – θ)] 
v2,

  
v4 = 0,
v5 = 0,

      γ{b1b2θ (1 – q1) + σ[ησ
 
(1 – θ) + θψ + ηb1θ + b2 (1 – θ)]}       α =

       
b3 {σψ[ηθ + (1 – θ)] + (b1 + b2){ησ (1 – θ) + θψ} + ηb1

2 θ + b2
2(1 – θ)}

. 

a = v2 
 
5

Σwiwj 
   ∂

2f2     (0,0) + v3
  

5

Σwiwj     
∂2f3     (0,0)

                  i,j = 1                 ∂xi∂xj                               i,j = 1                ∂xi∂xj
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 ∂
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∂2 f 3
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πNP θ    
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              μ{θ(1– q1)b1b2 + σ [ησ (1 – θ) + θψ + ηb1θ + b2 (1 – θ)]} 
w4

,
  

w2 =                    γb3[ηθσψ +b2 {ησ(1 – θ) + θψ + b2 (1 – θ)}]  
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w4 = w4 ˃ 0,
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It thus follows that                                              , where  
                                      

and

Also

Hence the sign of a depends on the value of Γ  and X, such 
that if Γ ˃ X  then a ˃ 0  and if Γ ˂ X then a < 0  whilst b ˃ 0. 
We thus obtain Theorem 4.

Theorem 4
If  Γ ˃ X, then [System 1] has a backward bifurcation at 

R0 = 1. Alternatively, if Γ ˂ X, then [System 1] undergoes 

forward bifurcation and the drug-persistent equilibrium is 
locally asymptotically stable for R0 ˃ 1 but close to one.

Further, using the same initial conditions when  R0 = 1.7443, 
the population of drug users tends to a drug-persistent 
equilibrium in Figure 6. This pattern indicates that, 
irrespective of the initial conditions, the population of drug 
users eventually settles at the drug-persistent equilibrium 
with increasing time. This result is in agreement with 
Theorem 4.

The role of key parameters
It is also important to investigate how some key parameters 
jointly influence the epidemic. This investigation was 
performed using contour plots. In Figure 7, contours of 

 
R0 

are plotted as a function of transition rates σ  and ρ2 in Figure 
7a, ρ2 and ψ in Figure 7b, γ

 
and ρ2 in Figure 7c and γ and  ψ 

in Figure 7d.

Based on the parameter values used in the simulation, 
Figure 7 shows that increasing σ, ρ2 and γ reduces the model 
reproduction number, whilst increasing ψ increases R0. This 
pattern indicates that R0 is a decreasing function of σ, ρ2 and 
γ, and is an increasing function of ψ. These results can also be 
obtained by performing a sensitivity analysis on R0. According 
to the model, to decrease the reproduction number, it is thus 
necessary to increase the rate at which individuals become 
hard drug users, the rate at which they permanently quit and 
the rate at which they are rehabilitated. This result makes 
sense as increasing forward progression rates eventually 
leads to more individuals quitting. The significance of 
increasing σ to fight the epidemic is an outcome of the model 
formulation for two reasons. Firstly, hard drug users have 
been assumed to be less effective recruiters and secondly, 
the class of hard drug users is the entry point into treatment 
programmes. It is thus advantageous according to the model, 
for identification purposes, that an individual remains a light 
drug user for only a short time. In reality, this result remains 
debatable.

Application of the model
We applied the model to data on methamphetamine abuse 
in the Western Cape. [System 1] was fitted to the data for 
individuals who attended specialist treatment centres in the 
Western Cape. This data is collected every 6 months by the 
South Africa Community Epidemiology Network on Drug 
Use2 for individuals who attend specialist treatment centres 
in the Western Cape. The data on treatment demand trends 
was used to model the growth of individuals in the UT class 
in our model. The data for the growth of methamphetamine 
users in the Western Cape is given in Table 3. Table 3 includes 
all individuals who use methamphetamine as their primary 
and secondary substance of abuse.

As the data is collected at 6 monthly intervals, the letter ‘a’ 
represents the first 6 months of the year (January to June) and 
‘b’ represents the second 6 months (July to December). Because 

 ∂2 f 3
    

 =  
πNP θη .

∂x2∂ϕ                μ    

Γ = rγμv3 [μσ + πθϕNP] X = πb3ϕNP(ησ + b2)[v2(1 – θ) + v3θ].

b =
 πNP[v2(1 – θ) + v3θ](w2 + ηw3) .

                              μ
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FIGURE 7: Contour plots for the substance abuse epidemic threshold, R0, as a 
function of the rates at which (a) users stop using drugs, ρ2, and light drug users 
become hard drug users, σ; (b) users stop using drugs, ρ2, and hard drug users 
revert to light drug users, ψ; (c) users stop using drugs, ρ2, and hard drug users 
enter treatment, γ; and (d) hard drug users enter treatment, γ , and hard drug 
users revert to light drug users, ψ.
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TABLE 3: The number of methamphetamine users (primary and secondary) in 
South Africa that sought treatment from 1996 to 2009.
Year Number of methamphetamine users
1996b 0
1997a 0
1997b 2
1998a 0
1998b 1
1999a 2
1999b 6
2000a 10
2000b 12
2001a 14
2001b 17
2002a 21
2002b 32
2003a 81
2003b 121
2004a 429
2004b 668
2005a 884
2005b 952
2006a 1232
2006b 1451
2007a 1413
2007b 1356
2008a 1209
2008b 1241
2009a 1837

Source: Plüddemann et al.2 
a, January to June; b, July to December.

of the unavailability of data on transmission and progression 
rates, we estimated most of the parameters, which makes the 
setting of initial conditions difficult. Nevertheless, for the 
purpose of the simulations and illustrating the usefulness of 
the model, we assumed an initial population of one million 
for the population of individuals who are prone to become 
methamphetamine abusers. We set the natural death rate of 
0.025.15

Many parameters are known to lie within limits. Only a few 
parameters are known exactly and it is thus important to 
estimate the others. The estimation process attempts to find 
the best accordance between the computed and observed 
data. The estimation can be carried out by ‘trial and error’ 
or by the use of software programs that are designed to find 
parameters that give the best fit. Here, the fitting process 
involved the use of the least squares curve fitting method. A 
Matlab18 code was used where unknown parameter values 
were given a lower and upper bound from which the set of 
parameter values that produced the best fit were obtained. 
The parameter values obtained from the fitting are shown in 
Table 4.

Figure 8 is a graphical representation of the model fitted to the 
data for individuals seeking treatment for methamphetamine 
abuse. As can be seen in Figure 8, the model fits well with the 
data.

For planning and management of interventions, it is important 
to project the prevalence of the methamphetamine epidemic 
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over a number of years. In our case, we chose 5 years. The 
projected prevalence over 5 years to 2015 is shown in Figure 
9. The model projection shows that there will be a gradual 
decrease in prevalence. For the given parameter values, the 
prevalence declines from a peak value of approximately 
2.3×105 to 1.9×105 over a period of 5 years. This estimation, 
of course, assumes that the dynamics remain the same over 
the entire period.

Discussion
We modified the compartmental deterministic model of 
Nyabadza and Hove-Musekwa15 to incorporate slow and fast 
progression of initiates and a cycle of light and hard drug use. 
We also included individuals who permanently stop using 
drugs and relapse for those under treatment. Relapse was 
considered synonymous to re-infection in epidemiological 
models. Our model was used to gain some insights into the 
dynamics of substance abuse. We established the local and 
global stability of the drug-free equilibrium. We noted that 

TABLE 4: Parameter values that give the best fit to the data in the model of 
substance abuse.
Parameter Range Estimated value
π 0–0.04 0.04
σ 0–0.9 0.0244
r 0.00002–0.9 0.0011
ψ 0–0.9 0.8560
η 0–0.9 0.8044
γ 0–0.99 0.4210
θ 0.0015–0.5 0.03

β 0–0.9399 0.9031

δ2 0.00001–0.9 1.0124 x 10-5

δ1 0.001–0.9 0.0998
μ 0–0.025† -

ρ1 0–0.91 0.8312
ρ2 0–0.3 0.0095
†, Source: Nyabadza and Hove-Musekwa15.

π = 0.04; σ = 0.0244; r = 0.011; ψ = 0.856; η = 0.8044; γ = 0.421; θ = 0.03; β = 0.9031; 
δ1 = 0.0988; δ2 = 1.0124-05; μ = 0.025; ρ1 = 0.8312; ρ2 = 0.008.

FIGURE 9: The projection of the prevalence of substance abuse in a community 
to 2015. 
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Parameter values that produced this fit are shown in Table 4 as the estimated parameter 
values. 
π = 0.04; σ = 0.0244; r = 0.011; ψ = 0.856; η = 0.8044; γ = 0.421; θ = 0.03; β = 0.9031; 
δ1 = 0.0998; δ2 = 1.0124 x 10-5; μ = 0.025; ρ1 = 0.8312; ρ2 = 0.0095.

FIGURE 8: Changes in the population of individuals under treatment. 
The continuous line represents the model’s prediction of the actual data 
(represented by the circles).
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the drug-free equilibrium point is locally stable whenever 
R0 < 1. Also, the model has a unique drug-persistent 
equilibrium whenever R0 ˃ 1, which shows persistence of 
substance use in the community. For some specific conditions 
established in Theorem 2, the model exhibits backward 
bifurcation and some bifurcation diagrams are presented in 
Figures 3 and 4. 

The numerical results suggest that the spread of substance 
abuse can be controlled through a reduction in the relapse 
rate ψ, increasing interventions at the light drug users’ 
phase and increasing the uptake rates into treatment. The 
existence of backward bifurcation in our model is indicative 
of complex dynamics. It is not sufficient to reduce R0 below 
unit to control the substance abuse epidemic but rather the 
value of 

 
R0 should be reduced to below R0

c. It was shown that 
backward bifurcation is caused by relapsing to hard drug use 
when individuals in treatment are lured back into substance 
abuse by light drug users. The process remains a subject of 
debate as individuals in treatment are more likely to revert 
to drug use without due influence. The model thus suggests 
that strengthening of treatment programmes to prevent 
relapse is vital.

As with many models, the model presented in this article 
should be treated with circumspection because of the 
assumptions made and the difficulty in the estimation of 
the model parameters. As part of future work to improve 
the model in this article, the model considered here can be 
refined to incorporate drug users who start using drugs on 
their own without having contact with other drug users; the 
impact of behavioural changes induced by campaigns; age 
structure; and recruitment by drug lords. The model can also 
be refined for a specific substance of abuse and be fitted to 
data. Despite its shortcomings, the model provides useful 
insights into the possible impact of treatment and relapse in 
communities struggling with substance abuse.
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