Stanley Trapido, Historian of South Africa, 1933–2008

Stanley Trapido, one of South Africa’s foremost historians, died at the age of 74 in January 2008. He had for many years been attached to Queen Elizabeth House at the University of Oxford and was Lecturer in the Government of New States and a Fellow of Lincoln College. Based in Oxford Commonwealth studies, he was an influential figure within the beavering circle of left-wing scholars who forged materialist academic history writing on South Africa through the 1970s and 1980s, in which vibrant social history and class analysis stretched the minds of scores of probing postgraduate students and appreciative academic colleagues. Although Stanley Trapido was in the thick of this mainly seminar atmosphere in London and Oxford, he never cultivated a school of personal protégés. His was not that sort of fancy reputation.

Born in 1933, Stan Trapido grew up and was schooled in the gruff Transvaal mining town of Krugersdorp, an appropriately geographical spot from which to embark on his planned science studies at the University of the Witwatersrand. But finding common cause with a radical fringe of students associated with the Congress of Democrats in the 1950s tugged him towards political history, and he ended up completing a master’s dissertation on service.

After a junior lecturing stint at the University of Cape Town, he moved to the University of Natal. In Durban, Stan met and married the woman who would be his devoted companion to the end of his life, the noted novelist, Barbara Trapido. In December 2007 she wrote gently and wryly in The Guardian about working in South Africa, Britain, Australia and America, knowing the supervision challenges of gold and maize.

Stan sustained an abiding interest in such things as liberalism and paternalism, Afrikaner nationalism, and mining capitalists and the 1899–1902 War throughout his scholarly life, often re-evaluating their significance in pretty unlikely places, such as Muizenberg beach. Fusing a large generalising capacity with an eye for suggestive detail, his scholarship throughout was marked by an alertness to the structures of power in society, to ideas and the forms they took, and by a keen attention to individuals and social classes and how they were embodied and deeply connected to one another. His research students, many of whom now occupy prominent university positions in South Africa, Britain, Australia and America, knew the supervision challenges that were coming, even before their supervisor opened his mouth.

Like other South African historical revisionists of his generation, Stanley Trapido’s writings owed a general intellectual debt to Marx. But his distrust of more arcane theory and leaden explanatory models made him a lucid and pene-
trating historian within the Marxist tradition, rather than a Marxist of the hydraulic variety.

Anyone lucky enough to have known Stan personally in recent decades would have known a warm, deliciously impene-
trable and slightly mischievous man, pottering about the welcoming Trapido lair, or wandering across an Oxford meadow with Polly and Moley, his beloved lurcher dogs. His rich companion-
ionship could also be felt in the Cape that he loved so much and its special spots that mattered to him up to the last years of his life, like the Olympia Café and Quagga Bookshop in Kalk Bay. He was truly an exceptional man of letters, by turns witty and stubborn, benign and exacting. He will be remembered for that as much as for his Eastern Cape expertise on

Sir Andries Stockenstrom, Lieutenant-
Governor of British Kaffraria in the 1830s. In referring to him, invariably, as Stockies, Stan reminded one of why history is worthwhile.

Bill Nasson is in the Department of Historical Studies at the University of Cape Town, Private Bag X3, Rondebosch 7701.

E-mail: bill.nasson@uct.ac.za

---

Chronology, climate and technological innovation associated with the Howieson’s Poort and Still Bay industries in South Africa

Jacobs et al. have presented new dates relating to the chronology of two impor-
tant African episodes in prehistory, associated with the Howieson’s Poort (HP) and Still Bay (SB) industries linked to
technological innovation. They present results based on optically stimulated luminescence (OSL) dating of sediments, suggesting ages of between 59.5 and 64.8 thousand years ago (kyr) for the HP (with 95% confidence limits ranging between 56.5 and 68.2 kyr at the lower and upper extremes, respectively). Their OSL ages for the SB are confined to between 71.0 and 71.9 kyr (with lower and upper 95% confidence limits ranging between 67.1 and 72.0 kyr), although earlier results had suggested that the SB at Blombos extended back to c. 77 kyr. In the context of their data, Jacobs et al. state that environ-
mental factors ‘were not necessarily the driving force behind the technological change’. This statement can be assessed in the context of independent data, including temperature indices for the Vostok core in Antarctica, dated by Petit et al., and temperature indices for a South African sequence at Klasies River.

Given the OSL dates in relation to temperature indices based on deuterium isotope ratios from the Vostok ice core, it would appear that the innovative SB industry corresponds to periods when temperatures were within the range of relatively warm (but cooling) temperatures close to the end of oxygen isotope stage (OIS) 5 and the HP episode of innovation falls within the range of relatively warm temperatures at the end of OIS 4, and at the beginning of OIS 3. Further, it would appear that the ‘gap’ between the HP and SB industries includes most of the coldest interval of OIS 4 associated with deuterium isotope ratios of about –482 parts per thousand (ppt) in the Vostok ice core. By comparison, the mean deuterium isotope ratios for the periods associated with the HP and SB dated by Jacobs et al. are significantly warmer, with mean values of –474.3 (±3.8 ppt) and –467.3 (±2.7 ppt) respectively, using deuterium isotope ratios for Vostok published by Petit et al. as a frame of reference.

On the basis of temperature indices for terrestrial sequences in southern Africa, based on multivariate analyses of rodents and insectivores, as well as on concentra-
tions of marine molluscs which relate to variability in sea level, Thackeray has noted (through the use of graphs based on the quantification of indices for temper-
"