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In this paper we analyse the effects of internal heat generation, thermal radiation and buoyancy 
force on the laminar boundary layer about a vertical plate in a uniform stream of fluid under 
a convective surface boundary condition. In the analysis, we assumed that the left surface 
of the plate is in contact with a hot fluid whilst a stream of cold fluid flows steadily over the 
right surface; the heat source decays exponentially outwards from the surface of the plate. 
The similarity variable method was applied to the steady state governing non-linear partial 
differential equations, which were transformed into a set of coupled non-linear ordinary 
differential equations and were solved numerically by applying a shooting iteration technique 
together with a sixth-order Runge–Kutta integration scheme for better accuracy. The effects 
of the Prandtl number, the local Biot number, the internal heat generation parameter, thermal 
radiation and the local Grashof number on the velocity and temperature profiles are illustrated 
and interpreted in physical terms. A comparison with previously published results on similar 
special cases showed excellent agreement.

© 2011. The Authors.
Licensee: AOSIS 
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Introduction
Boundary-layer flows over a moving or stretching plate are of great importance in view of their 
relevance to a wide variety of technical applications, particularly in the manufacture of fibres in 
glass and polymer industries. The first and foremost work regarding boundary-layer behaviour 
in moving surfaces in a quiescent fluid was performed by Sakiadis.1

Subsequently, many researchers2,3,4,5,6,7,8,9 worked on the problem of moving or stretching plates 
under different situations. In the boundary-layer theory, similarity solutions were found to 
be useful in the interpretation of certain fluid motions at large Reynolds numbers. Similarity 
solutions often exist for the flow over semi-infinite plates and stagnation point flow for two-
dimensional, axisymmetrical and three-dimensional bodies. In special cases, when there is no 
similarity solution, one has to solve a system of non-linear partial differential equations. For 
similarity boundary-layer flows, velocity profiles are similar. But this kind of similarity is lost 
for non-similarity flows.10,11,12,13,14 Obviously, the non-similarity boundary-layer flows are more 
general in nature and are more important, not only in theory but also in application.

The heat-transfer analysis of boundary-layer flows with radiation is also important in electrical 
power generation, astrophysical flows, solar power technology, space vehicle re-entry and other 
industrial areas. Extensive literature that deals with flows in the presence of radiation effects is 
now available. Raptis et al.15 studied the effect of thermal radiation on the magnetohydrodynamic 
flow of a viscous fluid past a semi-infinite stationary plate. Hayat et al.16 extended the analysis of 
reference15 for a second-grade fluid.

Convective heat transfer studies are very important in processes involving high temperatures, 
such as gas turbines, nuclear plants and thermal energy storage. Recently, Ishak17 examined the 
similarity solutions for flow and heat transfer over a permeable surface with convective boundary 
condition. Moreover, Aziz18,19 studied a similarity solution for laminar thermal boundary layer 
over a flat plate with a convective surface boundary condition and also studied hydrodynamic 
and thermal slip flow boundary layers over a flat plate with a constant heat flux boundary 
condition. Very recently, Makinde and Olanrewaju20 investigated the buoyancy effects on a 
thermal boundary layer over a vertical plate with a convective surface boundary condition.

In this study, the recent work of Ishak17, Aziz18 and Makinde and Olanrewaju20 was extended to 
include the effect of thermal radiation and internal heat generation. The numerical solutions of 
the resulting momentum and the thermal similarity equations are reported for representative 
values of the thermophysical parameters embedded in the fluid-convection process. The 
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objective of this paper was to explore the effects of thermal 
radiation and internal heat generation on the fluid under 
a convective surface boundary condition. The non-linear 
equations governing the flow were solved numerically using 
a shooting technique together with a sixth-order Runge–
Kutta integration scheme, which gives better accuracy than a 
fourth-order Runge–Kutta method. Graphical results are first 
reported for emerging parameters and then discussed.

Mathematical formulation
We considered a two-dimensional steady incompressible 
fluid flow coupled with heat transfer by convection over 
a vertical plate. A stream of cold fluid at temperature T∞  
moved over the right surface of the plate with a uniform 
velocity U∞ whilst the left surface of the plate was heated 
by convection from a hot fluid at temperature Tf , which 
provided a heat transfer coefficient hf . The density variation 
as a result of buoyancy force effects was taken into account 
in the momentum equation and the thermal radiation and 
the internal heat generation effects were taken into account 
in the energy equation (the Boussinesq approximation). The 
continuity, momentum and energy equations describing the 
flow are, respectively: 

[Eqn 1]

[Eqn 2]

[Eqn 3]

where u and v are the x (along the plate) and the y (normal to 
the plate) components of the velocities, respectively. T is the 
temperature, υ is the kinematics viscosity of the fluid, α is the 
thermal diffusivity of the fluid, β is the thermal expansion 
coefficient, Q is the heat released per unit per mass, g is the 
gravitational acceleration, qr is the radiative heat flux and k is 
the thermal conductivity. The velocity boundary conditions 
can be expressed as 
							     

[Eqn 4]

and
							     

[Eqn 5]

The boundary conditions at the plate surface and far into the 
cold fluid may be written as 

					     	
[Eqn 6]

and 						    

[Eqn 7]

The radiative heat flux qr is described by the Rosseland 
approximation such that 

							     
		  [Eqn 8]

where  σ* and K are the Stefan-Boltzmann constant and 
the mean absorption coefficient, respectively. Following 
Chamkha21, we assume that the temperature differences 
within the flow are sufficiently small such that T 4 can be 
expressed as a linear function after using the Taylor series 
to expand T 4 about the free stream temperature T∞ and 
neglecting higher-order terms. This result is the following 
approximation:
							     

[Eqn 9]

Using [Eqn 8] and [Eqn 9] in [Eqn 3], we obtain

[Eqn 10]

We then introduce a similarity variable η and a dimensionless 
stream function f(η) and temperature θ(η) as 

[Eqn 11]

where the prime symbol denotes differentiation with respect 
to η and Rex = U∞x/υ is the local Reynolds number. [Eqn 1] to 
[Eqn 7] reduce to: 

						      	
[Eqn 12]

[Eqn 13]

[Eqn 14]

and   						    
	

[Eqn 15]

where

[Eqn 16]

Bix is the local Biot number, Pr is the Prandtl number, Grx 
is the local Grashof number, Ra is the radiation parameter 
and λx is the internal heat generation parameter. For the 
momentum and energy equations to have a similarity 
solution, the parameters Grx, λx and Bix must be constants and 
not functions of x as in [Eqn 16]. This condition can be met 
if the heat-transfer coefficient hf is proportional to x–½ , the 
thermal expansion coefficient β is proportional to x–1 and the 
heat-release coefficient Q is proportional to x–1. We therefore 
assume

∂u  
+

  ∂v  = 0,
∂x       ∂y

u∂u  
+

  v∂u  
= υ

∂2u  
+

  gβ(T – T∞),
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+
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u(x, 0) = v(x, 0) = 0

u(x, ∞) = U∞.

– k
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[Eqn 17]

where c, d and m are constants. Substituting [Eqn 17] into 
[Eqn 16], we get

[Eqn 18]

Bi, λ and Gr defined by [Eqn 18] are the Biot number, the 
internal heat generation parameter and the Grashof number, 
respectively. The solutions of [Eqn 12] to [Eqn 15] yield the 
similarity solutions. However, the solutions generated are 
the local similarity solutions whenever Bix, λx and Grx are 
defined as in [Eqn 13].

Results and discussion
The ordinary differential equations ([Eqn 9] and [Eqn 10]) 
subject to the boundary conditions ([Eqn 11] and [Eqn 12]) 
were solved numerically using the symbolic algebra software 
Maple.22 Table 1 presents a comparison of the values of   –θ' (0) 
and θ(0) with those reported by Aziz18, Ishak17 and Makinde 
and Olanrewaju20, which show an excellent agreement for 
Pr = 0.72. Table 2 shows the values of the skin-friction 
coefficient f ''(0) and the local Nusselt number –θ'(0), for 
various values of embedded parameters. From Table 2, it can 
be seen that the skin friction and the rate of heat transfer at the 
plate surface increased with an increase in the local Grashof 
number, the convective surface heat transfer parameter, 

the internal heat generation parameter and the radiation 
absorption parameter. However, an increase in the fluid 
Prandtl number decreased the skin friction but increased the 
rate of heat transfer at the plate surface. Figures 1–6 depict 
the fluid velocity profiles. Generally, the fluid velocity is zero 
at the plate surface and increases gradually away from the 
plate towards the free stream value satisfying the boundary 
conditions. It is clearly seen from Figure 1 that the Grashof 
number had profuse effects on the velocity boundary 
layer thickness. It is interesting to note that an increase in 
the intensity of the convective surface heat transfer (Bix) 
produced a slight increase in the fluid velocity within the 
boundary layer (Figure 2). The local internal heat generation 
parameter, the Prandtl number and the local Biot number 
had little or no influence on the velocity profiles (Figures 3–4 
and Figure 6), which could be justified by [Eqn 12], which 
had a small value for the Grashof number. When Ra = 0.1, 
the Prandtl number effected the velocity profile (Figure 5) 
and the negative part could have been caused by the value 
of the Grashof number used (see [Eqn 12]) and the value of 
the radiation parameter used (see [Eqn 13]). Figures 7–12 
illustrate the fluid temperature profiles within the boundary 
layer. The fluid temperature was at a maximum at the plate 
surface and decreased exponentially to zero away from the 
plate, thus satisfying the boundary conditions. From these 
figures, it is noteworthy that the thermal boundary layer 
thickness increased with an increase in Bix, λx and Ra and 
decreased with increasing values of Grx and Pr. Hence, the 

hf = cx –   , β = mx –1, Q = dx–1,
1
2

Bi = 
c
√

   υ  
, Gr =

 υmg(Tf – T∞)
, λ =

    dQ     ,
       k    U∞                   U 2∞                  ρcpU∞

TABLE 1: A comparison of the values obtained for the Nusselt number [θ'(0)] and surface temperature [θ(0)] with an increase in the local Biot number (Bix) in this study 
and by Aziz18, Ishak17 and Makinde and Olanrewaju20 in previous studies.
Bix Present study Aziz18 Ishak17 Makinde and Olanrewaju20

–θ'(0) θ(0) –θ'(0) θ(0) –θ'(0) –θ'(0)
0.05 0.042767 0.14466 0.0428 0.1447 0.042767 0.0428

0.10 0.074724 0.25275 0.0747 0.2528 0.074724 0.0747

0.20 0.119295 0.40352 0.1193 0.4035 0.119295 0.1193

0.40 0.169994 0.57501 0.1700 0.5750 0.169994 0.1700

0.60 0.198051 0.66991 0.1981 0.6699 0.198051 0.1981

0.80 0.215864 0.73016 0.2159 0.7302 0.215864 0.2159

1.00 0.228178 0.77181 0.2282 0.7718 0.228178 0.2282

5.00 0.279131 0.94417 0.2791 0.9441 0.279131 0.2791

10.00 0.287146 0.97128 0.2871 0.9713 0.287146 0.2871

20.00 0.291329 0.98543 0.2913 0.9854 0.291329 0.2913

30.00 0.292754 0.99024  -  -  - 0.2928

In these computations, the radiation parameter (Ra), the local Grashof number (Grx) and the internal heat generation parameter (λx) were zero and the Prandtl number was 0.72.

TABLE 2: A comparison of the values of the skin-friction coefficient [ f "(0)], temperature at the wall surface [θ(0)] and the Nusselt number [θ'(0)] for different parameter 
values embedded in the flow model.
Bix Grx Pr λx Ra f "(0) –θ'(0) θ(0)
0.1 0.1 0.72 0.1 0.1 0.386316 0.066810 0.331810

1.0 0.1 0.72 0.1 0.1 0.460825 0.176790 0.823200

10.0 0.1 0.72 0.1 0.1 0.483261 0.213880 0.978610

0.1 0.5 0.72 0.1 0.1 0.557241 0.069730 0.302690

0.1 1.0 0.72 0.1 0.1 0.723310 0.071736 0.282630

0.1 0.1 3.00 0.1 0.1 -0.074540 0.231312 -1.313120

0.1 0.1 7.10 0.1 0.1 -0.015860 0.261733 -1.617330

0.1 0.1 0.72 0.5 0.1 0.280070 0.110631 -0.106310

0.1 0.1 0.72 0.6 0.1 0.298365 0.102052 -0.020520

0.1 0.1 0.72 0.1 0.5 0.392337 0.065305 0.346940

0.1 0.1 0.72 0.1 1.0 0.398724 0.063698 0.363019

0.1 0.1 0.72 0.1 2.0 0.408879 0.061177 0.388227

Bix, Biot number; Gr
x
, Grashof number; Pr, Prandtl number; λx, internal heat generation parameter; Ra, radiation parameter.

Page 3 of 6



S Afr J Sci  2011; 107(9/10)  http://www.sajs.co.za

Research Letter

Prandtl number, Pr = 0.72; internal heat generation parameter, λx = 0.1; Biot number, 
Bix = 0.1; radiation parameter, Ra = 0.1.

FIGURE 1: The fluid velocity profile with increasing distance from the plate 
surface (where f ’(η) = 0) and increasing Grashof number (Grx).
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Prandtl number, Pr = 0.72; internal heat generation parameter, λx = 0.1; Grashof number, 
Grx = 0.1; radiation parameter, Ra = 0.1.

FIGURE 2: The fluid velocity profile with increasing distance from the plate 
surface (where f ’(η) = 0) and increasing Biot number (Bix).
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FIGURE 3: The fluid velocity profile with increasing distance from the plate 
surface (where f ’(η) = 0) and increasing internal heat generation (λx).
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FIGURE 4: The fluid velocity profile with increasing distance from the plate 
surface (where  f ’(η) = 0) and increasing Prandtl number (Pr) when the radiation 
parameter, Ra = 0.5.

Pr = 0.72
Pr = 3
Pr = 7.1
Pr = 5+

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10

f ’(η)

η

Biot number, Bi
x
 = 0.1; internal heat generation parameter, λ

x
 = 0.1; Grashof number, 

Gr
x
 = 0.1; radiation parameter, Ra = 0.1.

FIGURE 5: The fluid velocity profile with increasing distance from the plate 
surface (where f ’(η) = 0) and increasing Prandtl number (Pr) when the radiation 
parameter, Ra = 0.1.
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FIGURE 6: The fluid velocity profile with increasing distance from the plate 
surface (where f ’(η) = 0) and increasing radiation (Ra).
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Prandtl number, Pr = 0.72; internal heat generation parameter, λx = 0.1; Biot number,
Bix = 0.1; radiation parameter, Ra = 0.1.

FIGURE 7: The fluid temperature profile with increasing distance from the plate 
surface (where θ(η) = maximum) and increasing Grashof number (Grx).
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FIGURE 8: The fluid temperature profile with increasing distance from the plate 
surface (where θ(η) = maximum) and increasing Biot number (Bi

x
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Internal heat generation parameter, λx = 0.1; Grashof number, Grx = 0.1; Biot number, 
Bix = 0.1; radiation parameter, Ra = 0.1.

FIGURE 11: The fluid temperature profile with increasing distance from the plate 
surface (where θ(η) = maximum) and increasing Prandtl number (Pr) when the 
radiation parameter, Ra = 0.1.

Internal heat generation parameter, λx = 0.1; Grashof number, Grx = 0.1; Biot number, 
Bix = 0.1; radiation parameter, Ra = 0.5.

FIGURE 10: The fluid temperature profile with increasing distance from the plate 
surface (where θ(η) = maximum) and increasing Prandtl number (Pr) when the 
radiation parameter, Ra = 0.5.
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FIGURE 9: The fluid temperature profile with increasing distance from the plate 
surface (where θ(η) = maximum) and increasing internal heat generation (λx).

θ(η)

0.4

0.3

0.2

0.1

0
0 2 4 6 8 10

η
Prandtl number, Pr = 0.72; internal heat generation parameter, λx = 0.1; Grashof number, 
Grx = 0.1; Biot number, Bix = 0.1.

FIGURE 12: The fluid temperature profile with increasing distance from the plate 
surface (where  θ(η) = maximum) and increasing radiation (Ra).
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convective surface heat transfer, the internal heat generation 
parameter and the radiation parameter enhanced thermal 
diffusion whilst an increase in the Prandtl number and the 
intensity of buoyancy force slowed down the rate of thermal 
diffusion within the boundary layer. Figure 13 shows the 
influence of Prandtl numbers on the thermal boundary layer, 
as obtained by Aziz18.

Conclusions
We analysed the effects of internal heat generation, thermal 
radiation and buoyancy force on the laminar boundary layer 
about a vertical plate in a uniform stream of fluid under a 
convective surface boundary. A similarity solution for the 
momentum and the thermal boundary layer equations is 
possible if the convective heat transfer of the fluid heating 
the plate on its left surface is proportional to x

–½ and if the 
thermal expansion coefficient β and the heat released per 
unit per mass Q are proportional to x–1. Numerical solutions 
of the similarity equations were reported for the various 
parameters embedded in the problem. The combined effect 
of increasing the Prandtl number and the Grashof number 
tended to reduce the thermal boundary layer thickness along 
the plate whilst the effects of increasing the Biot number, 
the internal heat generation parameter and the radiation 
absorption parameter enhanced thermal diffusion.
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FIGURE 13: The fluid temperature profile obtained by Aziz18 with increasing 
Prandtl number (Pr).
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