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The need for accurate quantification of the amount of carbon stored in the environment has 
never been greater. Carbon sequestration has become a vital component of the battle against 
global climate change, and monitoring and quantifying this process are major challenges 
for policymakers. Plant allometric equations allow managers and scientists to quantify the 
biomass contained in a tree without cutting it down, and therefore can play a pivotal role in 
measuring carbon sequestration in forests and savannahs. These equations have been available 
since the beginning of the 20th century, but their usefulness depends on the ability to estimate 
the error associated with the equations – something which has received scant attention in the 
past. This paper provides a method based on the theory of linear regression and the lognormal 
distribution to derive confidence limits for estimates of biomass derived from plant allometric 
equations. Allometric equations for several southern African savannah species are provided, 
as well as the parameters and equations required to calculate the confidence intervals. This 
method was applied to data collected from a sampling campaign carried out in a savannah 
landscape at the Skukuza flux site, Kruger National Park, South Africa. Here the error was 
10% of the total site biomass for the woody biomass and 2% for the leaf biomass. When the 
data were split into individual plots and used to estimate site biomass (as would occur in 
most sampling schemes) the error increased to 16% and 12% of the woody and leaf biomasses, 
respectively, as the sampling errors were added to the errors in the allometric equation. 
These methods can be used in any discipline that applies allometric equations, such as health 
sciences and animal physiology.

© 2011. The Authors.
Licensee: OpenJournals
Publishing. This work
is licensed under the
Creative Commons
Attribution License.

Introduction
Allometric equations that relate components of aboveground tree biomass to stem dimensions 
are almost universally used to obtain estimates of biomass in forests, woodlands and savannahs.1 
The approach has application in many areas, including resource inventories, assessing the spatial 
distribution of carbon,2 and comparisons in biomass allocations between different species of trees 
or between the same species under different circumstances.3,4 Destructive sampling of the entire 
aboveground mass of trees is a costly, difficult and labour-intensive process, and it results in 
the removal of the trees. The preferred method for estimating the biomass of individual trees 
or whole stands is therefore to make use of the strong relationships between the stem diameter 
near the ground (conventionally, but not necessarily, at breast height) and the mass of biomass 
components, such as wood and leaves. These relationships vary within and between species, 
and are time-consuming and difficult to determine. Most researchers therefore rely on published 
reports of species-specific allometric equations or multispecies models.5

However, if allometric relationships are to be used to calculate individual and stand biomass, 
it is increasingly important to have an understanding of the accuracy of these estimates by 
means of appropriate error calculations. This understanding is not a trivial concern5 and such 
error calculations have often been ignored in studies that use allometric relationships to calculate 
stand biomass. For example, an intensive study was carried out to determine how well biomass 
estimates from an allometric equation available in the literature estimated woody biomass by 
comparing the calculated biomass to the measured biomass of trees which were destructively 
sampled.6 It was shown that the equation consistently underestimated the biomass, but there 
were no confidence intervals associated with the estimates, and therefore it is difficult to conclude 
if this is a real underestimation or if the difference could be explained by the error in the estimate. 
The error typically has two main components: the uncertainty resulting from an incomplete 
sampling of the stems within a stand, and the uncertainty resulting from errors in the allometric 
relationships applied. The latter component of the error has been almost universally ignored, and 
is the focus of this paper.
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The most common form for the allometric equation is 
y = axb, referred to as a power function, where y is the wood 
mass, x is the stem diameter, and a and b are the scaling 
parameters.5,7,8 This equation can be turned into a linear 
equation (‘linearised’) by applying the natural logarithm to 
both sides: ln(y) = ln(a) + bln(x). These techniques assume 
that ln(y) = ln(a) + bln(x) + ε*, where ε* is the random error 
and is assumed to be normally distributed. 

In reporting plant allometry relationships, the errors in 
the estimation of biomass are generally not adequately 
quantified.5 Together with the regression coefficients, authors 
typically also report the sample size and the coefficient of 
determination (R2). Less frequently, authors provide the 
range in the diameters measured. We will show in this paper 
that these metrics do not give enough information about 
the errors associated with the predicted values from the 
regression, that is, there is not enough information to assess 
how well the values were predicted to allow uncertainty 
ranges to be calculated. When estimates of plant biomass 
are aggregated to stand level, the errors in the biomass 
estimation become aggregated as well, and the size of the 
error can become non-negligible. It therefore is important to 
obtain confidence intervals for the biomass estimates.

Zianis5 proposed using the delta method based on the second 
order Taylor approximation of the power function to obtain 
variance estimates for the predicted biomass. In this approach, 
the biomass, y, is treated as a straight transformation of 
the diameter, x, through the power function, y = axb. The 
coefficients are obtained from the literature and the estimate 
for the variance is then a function of these coefficients 
and the mean and variance of the diameters measured. 
Therefore, the error in the estimation of biomass is ignored, 
and the resulting variance is a function of the variance in 
the measured stem diameter. This variance only describes 
the expected variability in the biomass at the measured site 
if the power function between diameter and biomass can 
be assumed to hold exactly. As the relationship between 
stem diameter and biomass is generally very strong (in the 
order of 96% variance explained), this is a fair assumption 
when estimating biomass from a single stem diameter. But 
when biomass estimates for a stand or plot are made by 
aggregating the estimates from many stems, this assumption 
is less likely to hold, as the errors become aggregated as well. 
Moreover, the second order Taylor expansion only gives an 
approximation of the variance, and therefore introduces an 
additional source of error.9

Alternatives to linear regression techniques are available 
for obtaining allometric relationships for tree biomass. An 
example is the smearing estimator proposed by Duan10. 
The smearing estimator can be used to obtain predictions 
in the original scale, without the assumption of normality. 
Therefore this provides a non-parametric estimate of biomass 
from the fit of the linear regression. This estimate has been 
shown to be consistent under mild regulatory conditions, as 
well as efficient relative to parametric estimates.10 This makes 
the smearing estimator very appealing as an alternative to 

back transforming the log estimate. The difficulty in using 
this estimate lies in obtaining a variance or standard error for 
the predicted value. Ai and Norton11 proposed a technique 
based on the delta method for obtaining the standard error of 
the predicted value. This method involves a large number of 
additional calculations, and requires that the full data set and 
residuals be available from the original regression fitting. 
For a full derivation, refer to Ai and Norton11, who provide 
estimates under the assumptions of both homoscedastic and 
heteroscedastic variances. Because this method of obtaining 
confidence bands for predicted values relies on the delta 
method, and because of the large number of calculations 
required to obtain the standard error for each predicted value, 
as well as the large amount of information required from the 
original regression fitting which would be used each time a 
new predicted value was calculated, the smearing method is 
unlikely to become a popular method for obtaining biomass 
predictions.

Heteroscedasticity – where the variance depends on the 
regressors – is a known problem for biomass allometric 
relationships.12 Log transforming the equation is one 
method of stabilising the variance.13 Alternatively, weighted 
regression can be substituted for the standard linear 
regression method. In a weighted least squares regression, 
yi = β0 + β1x1 + εi, where εi is assumed to be normally 
distributed with zero mean and variance equal to σ2wi

-1.14 To 
obtain the regression estimators, ∑wi(yi – β0 – β1x1)

2 needs to 
be minimised. In order to implement weighted least squares 
regression, it is necessary for the weights to be known or 
the variance function to be known, which can then be used 
to estimate the weights from the observed data. Once the 
regression coefficients are estimated, obtaining a predicted 
value proceeds in the same fashion as for an ordinary least 
squares regression. To obtain a prediction interval, the 
variance of yj – yj, where yj is predicted from xj, is required:

[Eqn 1]

Therefore, the weight of the jth predicted value is required in 
order to obtain a prediction interval. This requires that either 
the weights are known, or the weights are a known function 
of x and can be calculated. The danger of using weighted 
least squares estimates is that most of the theory developed 
assumes that the weights are known. Estimating the weights 
introduces additional uncertainty, and it is unclear how this 
adds to the error of the predicted values.13

The importance of accurate tree biomass estimates, and 
measures of this accuracy, are likely to increase in the future 
as schemes for payment for carbon sequestration in forests 
become more widespread. Allometric techniques based on 
relatively easily acquired field information are a realistic 
option for carbon accounting, but only if the associated errors 
can be quantified. 

In this paper, we propose a method, derived from regression 
theory and the theory of the lognormal distribution, of 
assessing the error in biomass estimates obtained from 
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allometric equations. The details and advantages of this 
method are described, and illustrated using allometric 
relationships estimated for savannah species in southern 
Africa. 

Methodology
The general form of the simple linear regression equation is:

                                                       
[Eqn 2]

where i is the subject (individual stem) index, yi is the 
response variable, xi is the predictor variable, β0 and β1 are 
the regression coefficients, and εi is the error. It is assumed 
that the error is normally distributed with zero mean and 
constant variance. The constant variance assumption implies 
that, across the range of x values, the variability in the error 
does not change. 

For estimating tree biomass from stem diameter, the simple 
linear regression equation is often modified by assuming that 
the logarithm of the response variable can be explained by 
the linear equation:

                                              
  [Eqn 3]

where the regression parameters superscripted by asterisks 
denote the log regression parameters. The assumptions 
previously mentioned now apply to the regression 
relationship with the logged variables. Therefore, ln(yi) 
is assumed to be normally distributed, with mean 
μ* = β0*  + β*1  ln(xi) and variance σ2*. The fitting techniques 
which apply to simple linear regression can be used to obtain 
the regression parameters once the variables have been log 
transformed. This relationship is often expressed in the power 
form by taking exponents on both sides of the equation:

[Eqn 4] 

Often the error term is not shown. This is the typical form 
of the equation when applied to plant woody biomass.5 
Another typical application of this form of the equation is the 
relationship between weight and height in humans.15 

When choosing a method for fitting an allometric equation 
to the observed data, one has to take into account the fact 
that both the dependent variable (mass) and the independent 
variable (stem diameter) are measured with some error. 
There is much debate on whether to use the ordinary least 
squares (OLS), major axis or reduced major axis (RMA) 
methods.7,16 The OLS method is by far the most widely used 
and many examples of its use can be found.4,5,17,18,19,20,21 The 
OLS fitting method assumes that the independent variable is 
perfectly known, and only the dependent variable is prone 
to measurement error, whereas the major axis and RMA 
fitting methods allow both the biomass and the diameter 
to be measured with some error.7 McArdle16 studied the 
accuracy of regression estimates obtained under the three 
different fitting techniques and found that if the error in 

the independent variable was less than a third of the error 
in the dependent variable, then the OLS method was the 
most accurate. In addition, the OLS method allows for the 
inclusion of additional predictor variables, such as categorical 
variables, whereas the RMA or major axis methods are not 
easily employed when multiple predictors are included.22

As the relative error in stem diameter measurements is likely 
to be considerably smaller than the relative error in measuring 
woody or leaf biomass, using OLS to fit regression models 
for plant biomass will be justified under most circumstances. 
Niklas7 also states that if the R2-value is more than 0.95, then 
the slope estimates of the three different methods will be 
almost identical. Generally, R2-values for most plant biomass 
relationships tend to be greater than 0.90,21,23 but there are 
always exceptions. For these reasons, and because OLS tends 
to be the most widely used method, the OLS method was 
used for fitting regression relationships in this paper.

To test for heteroscedasticity of the residuals from the 
linear regressions, the studentised Breusch–Pagan 
test was calculated.24,25 This test specifically tests if the 
heteroscedasticity is such that the error variance is a 
multiplicative function of one or more variables, so that if x 
increases, the residuals fall farther and farther from the zero 
line. The null hypothesis for this test is that the residuals are 
not heteroscedastic. 

If it is assumed that the natural logarithm of the response 
is normally distributed, then the implication is that the 
response itself must be lognormally distributed with mean  
μ = exp(μ* + σ2* /2) and variance σ2 = exp(2μ* + 2σ2*) 
– exp(2μ* + σ2*) .26 Note that the estimate for µ is a function of 
both µ* and σ2*, which is why it is not possible to simply take 
the exponent of the estimates of the logged response from the 
linear regression to obtain the estimates in the required scale, 
as this would result in bias.27 

Statisticians and statistical software packages compute 
systems of linear equations (such as those that underlie linear 
regression analysis) using matrix algebra. A brief explanation 
of this convenient and efficient notation is included here 
for the non-specialist. The matrix of observations of the 
independent variable, referred to as the predictor or design 
matrix, is denoted X, and its transpose as X’ . In the case of a 
simple linear regression, the first column of X is a column of 
ones (for the intercept), and the second column is the vector 
of observations of the independent variable (in the same 
scale as represented in the linear regression equation). A 
key calculation in the text that follows is (X’X)-1 which is the 
matrix inversion of the matrix multiplication between X and 
its transpose.

From regression theory it is known that the expected value 
(E) and variance (Var) of ln(yi) is given by: 

[Eqn 5]

and 

yi = β0 + β1xi + εi

In(yi) = β*0  + β*1  ln(xi) + ε*i

yi = exp(β*0   )xi   exp(ε*i   )β*
1

^

E(ln(yi)) = μ*i   = β*0  + β*1  ln(xi)
^ ^ ^ ^
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[Eqn 6]

where x
i
 = (1, ln(xi)), ln(yi) is the predicted value from a 

new xi value, MSE is the mean square error obtained from 
the original regression analysis and X is the design matrix 
of the original regression. In the case of a simple linear 
regression, the calculation of the variance of a predicted 
value can be simplified into easily derivable terms from the 
original regression data. The term X’X can be simplified to 

                          where n is the sample size of the original 
regression, and the summations are applied to the predictor 
vector used to derive the original regression relationship, 
indicated by the subscript j. Therefore, if the MSE and the 
summary terms of X’X are available, then this closed form 
expression for the variance of a new predicted value can be 
used. A thorough explanation of linear regression theory can 
be found in Seber and Lee14.

The next step in the process is to obtain the predicted value 
of yi from μ*i = ln(yi) . This can be obtained by applying the 
following transformation:

[Eqn 7]

Therefore, it is necessary to have an estimate of the variance 
for the logged prediction in order to obtain an unbiased 
estimate for yi. In addition, the variance of the predicted 
value can be obtained from the following equation26:

[Eqn 8]

To obtain the 100(1 – α)% limits of a confidence interval for 
a predicted value, the following formulae for a lognormal 
variable can be used:

Lower limit =                                                                            [Eqn 9]

Upper limit =                                                                       [Eqn 10]

where z1-α/2 is the 1 - α/2 quantile of the standard normal 
distribution.28 These equations were derived based on the 
method described by Zou et al.28 where confidence intervals 
were derived for the mean of a lognormal variable. 

In general, once the biomass estimates have been obtained for 
individual stems, these values then get aggregated to stand 
level, either collectively or by species. The distribution of the 
sum of lognormal variables is approximately lognormal with 
parameters  μs = ∑ yi and σ2

s  = ∑σ2
i  .

29 Therefore, the estimated 
biomass values and their corresponding variance estimates 
can be summed across whole stands or across species to give 
the biomass estimates at a larger scale. Because the sum is 
still lognormally distributed, the previous formulae for 
confidence limits still apply, substituting μs into the place of 
yi  and σ2

s  into the place of σ2
i  .

Therefore, in order to obtain an estimate of the total 
aboveground biomass within a sample ‘plot’ (i.e. a delineated 

area, typically several metres squared, containing a number 
of stems, potentially of different species and with different 
diameters), the following information is required: the plot 
surface area, a complete list of stem diameters in the plots 
and the species to which each stem belongs. In addition, an 
allometric relationship for predicting biomass from the stem 
diameter is required for each species or morphological group. 
In order to make a rigorous estimate of the error associated 
with this total plot biomass, the allometric relationship must 
be accompanied by the following information: the sum of 
the squared predictor (∑(ln xj)

2), the sum of the unsquared 
predictor (∑ln xj), the MSE and the sample size (n). If the mean 
and variance of the diameter values are known, then one can 
use a second order Taylor approximation to estimate the 
variance,5 but this assumes that the allometric relationships 
are exact. If only the sample size and R2 values are reported, 
it is not possible to estimate error rigorously.

Invariably, the purpose of the assessment is to estimate the 
biomass in a much larger area than the plot in which each 
stem is measured – a whole forest compartment or landscape. 
For this purpose, a number of replicate plots are surveyed 
and then extrapolated to the larger extent. This extrapolation 
introduces a second element of error – the spatial variability 
between plots. The statistical properties of sampling schemes 
are well understood and are described here for completeness 
and so that the relationship between the allometric error and 
spatial variability becomes clear. 

It is typically assumed that the plots represent independent 
samples of the overall population, with a normal distribution. 
Under these assumptions, the mean of the sample plots is an 
unbiased estimator of the population value, with an error 
range as a result of sampling.

Stand biomass (kg/ha) =                                                  [Eqn 11]

where Y is the sample plot biomass, np is the number of 
sample plots and sp is the standard deviation across the 
sample plots.30 (This assumes that each plot is the same 
size, and that the number of plots is sufficient such that the 
z-statistic applies rather than the t-statistic, that is, there are 
more than about 30 plots.) 

In practice, sampling schemes may deviate from these 
assumptions in two important ways. Firstly, it is usually more 
efficient (in both statistical terms and time-and-motion terms) 
to estimate the biomass in a large number of small plots than 
a small number of large plots (although a minimum plot size 
should be maintained based on tree cluster size).31,32 In the 
extreme, this means that many of the plots will in fact have 
no trees, and most will have only one or two trees. Under 
these conditions it is unlikely that the biomass data will 
follow the normal distribution. If the sample plots are non-
overlapping and independent, and are of the same size, then 
it can be assumed that the biomass per plot has a Poisson 
sampling distribution.33 Additional properties that justify this 
assumption are that the probability of observing an amount 
of tree biomass increases in proportion to the size of the plot, 

Var(ln(yi)) = σi 
2     *   = MSE(1 + xi(X’X)-1x’i)

^ ^

^

     n        ∑ln xj    ,  ∑ln xj   ∑(ln xj)
2

^

yi = exp(ln(yi) + σ2* /2)^ ^ ^

σ2 = exp(2μ*i  + 2σi
2 *) – exp(2μ*i  + σi

2*)^ ^ ^ ^ ^

yi exp[–(z2     σ2
i    + {σ2

i  */2}2)1/2]1–α/2
^ ^ ^

yi exp[(z2     σ2
i    + {σ2

i  */2}2)1/2]1–α/2
^ ^ ^

^ ^ ^ ^

^

^ ^ ^

i i

∑Y/np ± z1–α/2 Sp/√ np–1

⌠⌠ ⌠⌠

*

*
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and there exists a plot size that is sufficiently small that the 
probability of observing tree biomass in a plot that size or 
smaller is virtually zero. Therefore the mean and variance of 
the biomass per unit area will be estimated by the sample 
mean of the plot biomass estimates. That means that in the 
previous equation, the value of sp should be approximated by 
√ ∑Y/np , because the variance of a Poisson variable is equal 
to its mean. The overall estimation error for the site biomass 
is the sum of the analytical error and the sampling error.30 

Secondly, in some cases, the sampled area may not be an 
insignificant fraction of the total area, and given that the plots 
are typically laid out not to overlap, this is a non-replacement 
sample from a finite population (or is referred to as sampling 
without replacement), and the samples are therefore not 
strictly independent. As the sampled area tends towards the 
total area, so the sampling error tends towards zero, but the 
allometric error remains finite. In the extreme case where a 
census is taken of all the tree diameters in the area of interest, 
the overall estimation error will be equal to the analytical 
error only.

Application of method
To demonstrate this method, the stem diameters collected 
during a field campaign characterising the vegetation 
structure at the Skukuza flux site, located in the Kruger 
National Park, South Africa, were used to obtain the 
estimated biomass at the site, along with the variance 
estimates and 95% confidence intervals. In this example, both 
woody biomass and leaf biomass were estimated.

The flux tower is located at 25°01.184`S, 31°29.813`E, within 
a semi-arid subtropical climate. The site straddles an ecotone 
between a fine-leafed Acacia savannah on the somewhat 
more clayey downslope soils and a broad-leafed Combretum 
savannah on the more sandy soils of the ridge tops. A total 
of 24 woody species were sampled during the tree census 
carried out in April 2008, of which the dominant species were 
Combretum apiculatum, Sclerocarya birrea and Acacia nigrescens. 
A full site description is given elsewhere.34,35 

The area in which the tree census was carried out measured 
200 m x 200 m, centred on the tower itself. It was accurately 
demarcated into a sampling grid, where each grid cell was 
50  m  x  50  m. All the stems taller than 1.0  m within the 
entire area were measured. Species and the following stem 
dimensions were recorded: diameter just above the basal 
swelling, height, height of the lowest foliage, and maximum 
and minimum canopy diameters. The location of the trees 
was approximated (to within 1.0  m) with the assistance of 
the grid and a high-resolution aerial photograph.

Knowing the spatial location of each stem allowed us 
post hoc to sample the population at different sampling 
intensities, as well as to calculate the biomass for the entire 
surveyed area. Comparing estimates for post hoc samples 
to the population estimates permitted us to investigate the 
relative uncertainties as a result of the sampling strategy and 
the allometric estimates.

Before biomass estimates could be obtained, the available 
allometric data sets specific to the tree species at the site 
were collected and the appropriate regression parameters 
were calculated. To collect the allometric data sets, plant 
parameters (including stem diameter) were measured on 
the selected trees. Once these measurements were taken, the 
tree or branch of the tree was cut at the base. The biomass 
was then separated into woody and leaf biomass and then 
oven dried for at least 48 h. All the allometric data sets used 
were made available by Scholes36 and Goodman37. Both of 
these authors gave access to their original data, and therefore 
the regression coefficients and required regression statistics 
could be derived. Originally, only the regression coefficients, 
R2-values, sample size and range of stem diameters were 
reported. 

Table 1 gives a summary of the regression results as well as 
the source of the original data set. The regression coefficients 
were derived using R open-source statistical software 
(http://www.r-project.org). The equation fitted to woody 
biomass was:

                                          [Eqn 12]

where yWi is the dried woody biomass in kilograms, xi  is the 
stem diameter in centimetres, β*W 0 and β*W  1 are the regression 
coefficients for the logged woody biomass and ε*W  i is the error 
in the estimation of logged woody biomass. 

The equation fitted to leaf biomass was:

[Eqn 13]

where yLi is the leaf biomass in kilograms, βL0 and βL1 are 
the regression coefficients for leaf biomass and εLi is the 
estimation error. It was found that a linear form of the 
relationship fits the data better than a power equation for 
leaf biomass, and that a relationship with the square of stem 
diameter fits better than the unsquared diameter, which 
can be explained because tree volume should scale with the 
cross-sectional area of the trunk. (Scholes36 and Chidumayo38 
have also reported linear equations for leaf biomass.)

To obtain the variance estimates for the leaf biomass, a similar 
approach as described above for the logged regression 
equation can be implemented, but it is now not necessary 
to make the adjustments for the lognormal distribution. The 
estimate for the variance of yLi , when the relationship is in the 
form of a simple linear regression, is:

                                   [Eqn 14]

where xi = (1, x2 i  ), and X’X can now be simplified to 

    n         ∑ x2
j    

  ∑ x2 j        ∑(x2
j  )

2 . The estimate for  yLi will be in kilograms, 
and therefore the variance term will be in squared kilograms.

Allometric data sets were not available for all tree species 
present at the site, and therefore it was necessary to derive 

ln(yWi) = β*w  0 + β*W  1 ln(xi) + ε*W  i

yLi = βL0 + βL1x
2
i  + εLi,

^

Var(yLi) = σ2
L  i = MSE(1+xi(X’X)–1 x’i)

⌠⌠ ⌠⌠

^

http://www.r-project.org
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TABLE 1: Regression statistics obtained from allometric data sets for the estimation of tree biomass.
Woody biomass: 

Species† Mean square 
error

n R2 Range of 
diameter (cm)

Breusch–Pagan  
test (p-value)

Colophospermum mopane
Combretum apiculatum
Sclerocarya birrea

-2.77
-3.27
-3.35

2.49
2.8
2.62

6.90 × 10-2

4.24 × 10-2

3.67 × 10-2

30
30
30

56.18
61.37
64.5

112.56
133.39
148.85

0.96
0.98
0.99

1.8–23.0
2.1–18.2
3.6–33.0

0.21 (0.6430)
0.005 (0.9452)
1.97 (0.1610)

Species‡ Mean square 
error

n R2 Range of 
diameter (cm)

Breusch–Pagan 
test (p-value)

Acacia grandicornuta
Acacia luederitzii
Acacia nigrescens
Acacia nilotica
Balanites maughamii
Cassine aethiopica
Combretum molle
Dichrostachys cinerea
Euclea divinorum
Euclea schimperi
Sideroxylon inerme
Spirostachys africana
Terminalia sericea
Ziziphus mucronata

-3.31
-3.57
-3.55
-3.78
-3.23
-3.72
-2.95
-3.08
-3.38
-3.61
-3.71
-3.98
-3.62
-3.33

3.07
3.35
3.06
3.16
2.54
3.09
2.49
3.12
2.88
2.96
3.12
2.91
2.79
2.96

1.19 × 10-1

1.38 × 10-1

5.92 × 10-2

5.15 × 10-2

3.37 × 10-1

5.52 × 10-2

2.48 × 10-2

1.55 × 10-1

7.24 × 10-2

3.15 × 10-2

5.31 × 10-2

5.01 × 10-2

3.43 × 10-2

6.87 × 10-2

38
36
31
38
29
39
22
66
36
34
32
27
36
56

24.28
27.23
19.87
27.17
23.03
40.03
16.04
34.34
28.76
37.20
28.40
18.56
29.37
60.92

27.65
30.96
27.97
32.16
30.36
56.77
20.00
36.52
38.13
51.18
41.55
25.32
36.7
96.07

0.96
0.96
0.99
0.99
0.90
0.99
0.99
0.95
0.98
0.99
0.99
0.99
0.99
0.99

0.6–8.1
0.7–8.3
0.5–9.7
0.8–8.3
0.9–10.0
0.7–9.6
0.8–10.5
0.7–9.6
0.6–9.7
0.8–9.9
0.5–10.3
0.8–8.9
0.8–10.4
0.3–14.6

0.005 (0.9458)
0.30 (0.5820)
0.03 (0.8625)
2.03 (0.1544)
3.35 (0.0670)
6.20 (0.0128)
1.41 (0.2356)
1.01 (0.3151)
2.44 (0.1181)
0.63 (0.4284)
2.12 (0.1457)
1.95 (0.1624)
0.88 (0.3481)
0.79 (0.3730)

General equations
Mean square 
error

n R2 Range of 
diameter (cm)

Breusch–Pagan 
test (p-value)

Fine-leafed
Broad-leafed

-3.35
-3.47

3.09
2.83

1.72 × 10-1

1.20 × 10-1
209
443

132.90
509.80

155.26
858.34

0.95
0.98

0.5–9.7
0.3–33.0

3.11 (0.0775)
1.31 (0.2532)

Leaf biomass: 

Species† Mean square 
error

n R2 Range of 
diameter (cm)

Breusch–Pagan 
test (p-value)

Acacia nigrescens
Colophospermum mopane
Combretum apiculatum
Sclerocarya birrea

-0.012
0.050
-0.156
0.004

0.018
0.004
0.012
0.007

1.28 × 10-4

6.18 × 10-3

3.80 × 10-3

8.24 × 10-4

30
16
28
33

85.87
491.48
725.00
283.89

383.21
24425.72
26583.00
3230.08

0.93
0.66
0.92
0.63

0.5–3.0
2.3–9.8
2.8–10.2
1.4–4.4

5.20 (0.0226)
0.96 (0.3274)
13.68 (0.0002)
11.52 (0.0007)

Species‡ Mean square 
error

n R2 Range of 
diameter (cm)

Breusch–Pagan 
test (p-value)

Acacia grandicornuta
Acacia luederitzii
Acacia nilotica
Cassine aethiopica
Balanites maughamii
Combretum molle
Dichrostachys cinerea
Euclea divinorum
Euclea schimperi
Sideroxylon inerme
Spirostachys africana
Terminalia sericea
Ziziphus mucronata

-0.015
-0.002
-0.018
-0.045
-0.002
0.060
-0.013
0.032
-0.012
0.024
0.019
0.015
-0.065

0.020
0.009
0.017
0.021
0.011
0.008
0.020
0.019
0.025
0.025
0.010
0.025
0.020

2.85 × 10-2

4.24 × 10-4

2.21 × 10-3

1.29 × 10-2

2.02 × 10-3

5.54 ×10-3 
2.75 ×10-3

1.02 × 10-2

1.47 × 10-2

4.73 × 10-2

1.51 × 10-3

1.38 × 10-2

2.25 × 10-2

38
36
38
39
29
22
66
36
34
32
27
36
56

274.34
306.61
319.02
623.29
371.38
247.06
397.28
405.87
545.99
484.13
290.75
399.93
1226.86

7010.18
8547.3
8624.61
26284.38
19281.23
14508.82
12513.41
15967.2
22533.89
24710.34
11857.64
17734.27
93986.11

0.95
0.97
0.95
0.94
0.97
0.87
0.96
0.93
0.95
0.88
0.96
0.94
0.96

0.6–8.1
0.7–8.3
0.8–8.3
0.7–9.6 
0.9–10.0
0.8–10.5
0.7–9.6
0.6–9.7
0.8–9.9
0.5–10.3
0.8–8.9
0.8–10.4
0.3–14.6

10.38 (0.0013)
20.75 (<0.0001)
9.29 (0.0023)
15.81 (<0.0001)
7.38 (0.0066)
3.85 (0.04985)
22.03 (<0.0001)
2.73 (0.0984)
3.13 (0.0765)
7.38 (0.0066)
2.42 (0.1201)
14.62 (0.0001)
8.72 (0.0032)

General equation
Mean square 
error

n R2 Range of 
diameter (cm)

Breusch–Pagan 
test (p-value)

General leaf -0.024 0.018 2.94 × 10-2 716 8818.46 404349.92 0.82 0.3–14.6 293.91 (<0.0001)
†, Source: Scholes36 

‡, Source: Goodman37

Woody biomass (kg) was fitted to a power function of stem diameter (cm) whereas the leaf biomass (kg) was fitted to a linear regression. The statistics supplied in this table are sufficient to calculate 
the variance of biomass estimates obtained from the given regression equations. The units of the mean square error (MSE) are the squared units of the response, therefore in this example they 
depend on whether biomass or the logarithm of biomass was modelled. The ordinary least squares regression coefficients were derived using R. The MSE is reported with the standard regression 
output, and the sums of predictor variable can easily be obtained using the sum function in R or in most spreadsheet applications. The Breusch–Pagan test for heteroscedasticity is reported in 
the last column.
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general equations from the data sets which were available 
for other savannah tree species. For the woody biomass 
general equation, a biplot of the regression parameters for 
the species-specific equations showed two clear groups: 

one applicable to broad-leafed species and the other to 
fine-leafed species (Figure  1), and therefore two separate 
general equations were derived. The species data sets used 
to derive the woody biomass equation for fine-leafed trees 
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were A. nigrescens,36 A. nilotica, A. grandicornuta, A. luederitzii 
and Dichrostachys cinerea.37 To derive the equation for the 
broad-leafed species, allometric data sets for C. apiculatum, S. 
birrea, Colophospermum mopane,36 C. molle, Euclea schimperi, E. 
divinorum, Sideroxylon inerme, Spirostachys africana, Terminalia 
sericea, Balanites maughamii, Cassine aethiopica and Ziziphus 
mucronata37 were used. When the regression parameters 
of the leaf biomass equations were plotted against each 
other, no clear groups were distinguishable (Figure 1), and 
therefore only one general equation for leaf biomass was 
derived, pooling the data from all available species. 

The derived regression equations, as well as the additional 
regression statistics, were used to obtain biomass estimates 
and their variances based on the stem diameter measurements 
taken at the Skukuza flux site.

Table 1 includes the Breusch–Pagan test for heteroscedasticity. 
The residuals under the woody biomass equations, where 
the logarithm of biomass was modelled, performed well 
under the Breusch–Pagan test, with only Cassine aethiopica 
obtaining a significant result. This species was not present at 
the Skukuza flux site. This indicates that logging the woody 
biomass sufficiently accommodates heteroscedasticity in 
the data. The residuals under the leaf biomass equations 
performed poorly in terms of heteroscedasticity, most likely 
because biomass was not logged in this instance. As logging 
the leaf biomass data leads to poorer fits of the regression line, 
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0
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b

FIGURE 1: Biplot of the regression intercept and slope estimates of woody (a) 
and leaf (b) biomass equations for individual species, marked either as fine-
leafed or broad-leafed species.

weighted least squares regression could potentially result in 
better variance estimates for the predicted values without the 
need to log the leaf biomass, but this would require strong 
assumptions about the functional form of the variance, and 
could reduce the accuracy of the variance estimates further if 
incorrectly estimated. For the sake of demonstrating how the 
biomass estimates are aggregated under a model assuming a 
linear relationship for biomass, the OLS linear regressions for 
leaf biomass were used.

Results of application
Of the 24 savannah tree species occurring at the site, eight 
of these had species-specific equations. These eight species 
contributed 77.5% of the total aboveground woody biomass 
estimated at the flux site. The woody and leaf biomass were 
calculated for each individual stem, and then aggregated 
to site level and per species. Biomass is usually expressed 
per unit area, and therefore the biomass estimates for each 
sample plot were divided by the area of the plot, and the 
species biomass estimates for the entire site were divided by 
the total site area. These results are displayed in Figures  1 
and 2.

Plotting the biomass, expressed as kilograms per hectare, 
for the individual sampling plots, shows that there is a large 
amount of variability throughout the site in the distribution 
of the woody and leaf biomass (Figure 2). Examination of the 
confidence intervals for the individual plot estimates shows 
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FIGURE 2: Plot of the woody (a) and leaf (b) biomass estimates for each sampling 
plot. The bars represent the 95% confidence interval for the biomass estimate.
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that, for woody biomass, the limits are not symmetrical, 
but rather the upper limit is more extreme than the lower 
limit (Figure 2). This is because the lognormal distribution 
is assumed to be underlying the data. In the case of the 
leaf biomass estimates, which are assumed to be normally 
distributed, the confidence intervals are symmetrical. 

At this site, the plot estimates for woody biomass range 
between 2.5 Mg/ha and 45.5 Mg/ha. The confidence intervals 
range between 24% and 99% of the biomass estimate, with 
larger biomass estimates generally having wider intervals. 
The estimates for leaf biomass ranged between 0.11 Mg/ha 
and 0.91 Mg/ha, with confidence intervals between 6.6% and 
45.8% of the biomass estimates.

There are two reasons why the larger biomass estimates 
would have wider confidence intervals. Firstly, if the large 
stand estimate is because of one or a few large individuals in 
the plot, the confidence interval will be wide, because as the 
diameter of the trees moves further outside of the range of the 
original regression, the confidence interval becomes wider, 
because the uncertainty in the estimate will be greater. In the 
case of a simple linear regression, the standard deviation of a 
predicted value can be written as39:
 

                                        
   [Eqn 15]

This formulation shows that the standard deviation of the 
predicted value from xi, σi, will get larger the farther the new x 
value moves from the mean of the x variables from the original 
regression, x. The standard deviation is the component of the 
confidence interval for a predicted value that determines 
how wide the interval will be, and therefore the confidence 
interval becomes wider for larger x values. In addition, in 
the case of the woody biomass estimates, the larger variance 
could be because of one or more large estimates of biomass 
in the plot, which would then have a large variance estimate 
because, under the lognormal distribution, the variance 
increases with increasing mean.

The second reason the confidence intervals for plots with 
large biomass estimates may be wide is that several stems 
may have been included in this plot. The error will then 
accumulate with each biomass prediction. If the plot contains 
many stems from species which require the generalised 
equation, or for species with poorly fitting allometric 
equations, then this will also result in a larger accumulated 
variance for the plot. 

The biomass was also accumulated per species for the entire 
site (Figure 3). The plots show that the majority of the biomass 
at the site is contributed by A. nigrescens, C. apiculatum and S. 
birrea, obtaining woody biomass estimates (and confidence 
intervals) of 3.9  Mg/ha (3.3; 4.7), 5.4  Mg/ha (5.1; 5.6) and 
6.1 Mg/ha (5.6; 6.6), respectively, and leaf biomass estimates 
of 0.062 Mg/ha (0.061; 0.063), 0.137 Mg/ha (0.136; 0.139) and 
0.114 Mg/ha (0.109; 0.119), respectively. 

From the census data collected of all the tree diameters at the 
site – a total of 6806 plant stems – the site woody biomass 
was calculated to be 22.93 Mg/ha (21.79; 24.13) and the leaf 
biomass was calculated to be 0.49 Mg/ha (0.479; 0.492). As 
the data collected here represent all the trees in the site of 
interest, there is no sampling error associated with these 
estimates; only the allometric error.

To demonstrate the role of the sampling error in the 
calculation of biomass, a sample of non-overlapping circular 
plots was drawn from the site. The diameter of these 
circular plots was 30 m. Trees falling within these plots were 
considered to be within the sample, and trees outside of the 
plots were ignored. The estimated biomass was determined 
for the site and for each species, along with the associated 
confidence limits.

To obtain the biomass estimate for the site, the biomass 
estimates for the sample plots were averaged to obtain the 
average biomass per hectare. The total error for the site 
biomass estimate was derived by accumulating the errors 
from each allometric estimation, and then adding this value 
to the sampling error, estimated from the square root of the 
average of the biomass estimates, because the data were 
assumed to be Poisson distributed. The same method was 
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FIGURE 3: Plot of the woody (a) and leaf (b) biomass estimates per species 
for the complete site. The bars represent the 95% confidence interval for the 
biomass estimate. 
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applied to the species biomass estimates, but in this case 
many of the species did not occur in each of the sampling 
plots, resulting in a large number of zero biomass estimates 
for each species. 

The biomass estimates obtained from the sample data 
compared to those derived from the census data (Figure 4), 
are generally quite similar, with the confidence intervals 
for the estimates overlapping. A notable exception is A. 
nigrescens, which, if the census data can be assumed to 
be correct, is dramatically underestimated by the sample 
data. L. schweinfurthii and L. capassa are also somewhat 
underestimated, but not quite as severely as A. nigrescens. 
This error could be as a result of an inappropriate sampling 
strategy, resulting in non-representation of A. nigrescens. The 
sampling strategy employed in this case placed the sampling 
plots on the intersection points of an evenly spaced grid, 
so that the points were 50  m apart. Because the trees in a 
savannah landscape can be clustered together, the selection 
of sampling plots may have been on the same scale as the 
natural clustering in the landscape, thereby consistently 
leaving out the A. nigrescens trees, which are a significant 
component of this system. 

The site woody biomass estimate obtained from the sample 
data was 18.45  Mg/ha (16.994; 20.024), and the site leaf 
biomass was estimated to be 0.45  Mg/ha (0.421; 0.474) 
(Figure  5). Both of these estimates are slightly below the 
estimates obtained from the census data, but this could be 
explained by the non-representation of the A. nigrescens trees 
in the sample data. 

Conclusions
The method explained in this paper provides a straightforward 
means of obtaining tree biomass estimates and their 
variances, along with confidence intervals. This method 
makes use of the regression theory already universally 
used to obtain biomass estimates, and goes further into the 
theory to extract the variance of predicted values. Therefore 
no additional assumptions are made and no additional 
fieldwork is required. For the widely used power law 
formulation of the relationship between stem diameter and 
woody mass, lognormal distribution theory is used to obtain 
appropriate estimates and asymmetric confidence intervals 
for the biomass estimates. Once the variance estimates are 
obtained for the biomass estimated from individual stems, 
these estimates can be accumulated by plot or by species 
and integrated with the uncertainties resulting from partial 
sampling of the spatially heterogeneous forest stand.

If this method is to be widely implemented, then future 
publications of tree biomass allometric relationships must 
report, in addition to the regression coefficients, the sum 
of the squared and unsquared predictor variable, the MSE 
and the sample size. These statistics are readily available 
from current statistical analysis software. Together, these 
parameters fully define the relationship. Where methods 
other than OLS are used to obtain allometric relationships, 
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FIGURE 4: Plot of the woody (a) and leaf (b) biomass estimates per species for 
the complete site, estimated from the sample data. The bars represent the 95% 
confidence interval for the biomass estimate. 
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additional parameters should be reported to allow users of 
these equations to calculate error estimates for the biomass 
predictions. In the case of weighted least squares methods, 
parameters should be included to allow the user to calculate 
the weight allocated to the predictor variable (e.g. stem 
diameter) from which the biomass estimate is derived, so 
that prediction intervals can be calculated as well.

Census data Sample data

Census data Sample data
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The application of this method demonstrates that errors 
in the estimation of biomass can result not only from the 
uncertainty in the relationship between stem diameter and 
biomass, but also from the sampling error. A poorly designed 
sampling scheme which results in the under-representation 
or over-representation of certain species can result in larger 
errors in the estimates than those as a result of the use of 
generalised allometric equations.

Allometry is not restricted to plant biomass estimation. Other 
examples where allometric equations (also in the form of the 
power function) are used for estimation include: prediction 
of the clearance rate (the rate at which a unit volume of water 
is completely cleared of particles) of a bivalve from its weight 
or length40; prediction of an organism’s metabolic rate from 
its body size and temperature41; and prediction of aspects 
of animal behaviour, such as foraging and home range size, 
from body size measurements.42 This methodology can 
be extended to any application where a linear regression 
equation obtained from historic data is used to predict new 
data, including those applications where a logged dependent 
variable is used. 
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