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Introduction
The structure of genomes varies greatly throughout the three domains of life. Eubacterial and 
archaebacterial genomes are arranged into a single circular chromosome. Eukaryote genomes are 
arranged into multiple linear chromosomes within the nucleus, and can be made challenging by 
features such as introns, low complexity repetitive elements, large genome sizes and extensive 
sequence duplications. These problems are generally more substantial in the plant and animal 
kingdoms, which tend to have a large number of repetitive regions and are prone to ploidy changes. 
The sequencing of whole genomes has traditionally been restricted to small genomes or genomes 
of model organisms which are of particular global interest, because of the high cost of sequencing 
and the complexity of assembling all the sequence reads. Sequencing of other eukaryote genomes 
(so called ‘non-model organisms’), which may be of biological or evolutionary importance, has 
to date been considered unfeasible within the resources of the average research laboratory. This 
scenario is changing.

In the last five years, the development of next generation sequencing technology has seen a major 
increase in efficiency (the number of base pairs sequenced per day) as well as a vast decrease in 
cost per base, with prices approximately halving every five months since 2007.1 Unfortunately, 
the read length (the number of nucleotides sequenced off one fragment) has seen a large decrease 
compared to that of the original Sanger methods.2 This reduction has posed a major challenge 
for genome assembly as it makes the definition of areas that have repeated elements for long 
stretches extremely difficult. The severity of this problem increases with the size of the genome 
and the number of variable repeat regions. It was for this reason that de novo sequencing of the 
genomes of complex non-model organisms using solely next generation sequencing technology 
initially looked dubious.3 Improvements in next generation sequencing technology to increase 
sequence read lengths, together with the development of new software tools to assemble the 
sequence reads, has, however, made the sequencing of the genomes of non-model organisms 
feasible for the first time, as demonstrated recently by the sequencing and assembly of the giant 
panda4 and strawberry genomes.5

Next generation sequencing technology
The phrase ‘next generation sequencing’ is a general term applied to sequencing platforms that 
use post-Sanger technology to sequence large numbers of DNA fragments in parallel.6 Roche, 
through their ’454’ sequencing platform, developed the first viable high-throughput sequencing 
technique.7 The genomic DNA is randomly sheared into fragments of approximately 800 bp 
to 1000 bp in length, although a shorter fragment works better if maximum read length is not 
required. Adaptor primer sequences are ligated onto the ends of the genome fragments, which 
are then hybridised to beads covered in one of the complementary primers. The beads are diluted in 
an oil emulsion, such that each oil droplet contains only one bead. The DNA fragment attached 
to each bead is amplified by the polymerase chain reaction (PCR) in a process known as emulsion 
PCR or emPCR. Each bead is then aliquoted into a welled plate, such that there is only one bead 
in each well. The actual sequencing commences with the plates undergoing a series of washes. 
Each wash contains one of the four nucleotides. The incorporation of these nucleotides into a 
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Sequencing the genomes of the many scientifically fascinating plants and animals found 
in South Africa is fast becoming a viable option as a result of the rapid and sustained drop 
in the cost of next generation sequencing over the last five years. However, the processing 
and assembly of the sequence data produced is not trivial. There are several factors which 
need to be taken into consideration when planning a strategy to assemble genome sequence 
data de novo. This paper reviews the advances and the challenges in two of the most rapidly 
developing areas of the field: the sequencing technology and the software programs used to 
assemble de novo the sequence data generated by these technologies into a genome.
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sequence yields a light reaction which can be measured. 
The number of nucleotides incorporated into a sequence 
per wash is deduced by the strength of the signal. This 
method is referred to as pyrosequencing or sequencing by 
synthesis. The 454 platform, GS FLX+, typically gives a mode 
read length of 700 bp (Table 1) and is capable of reaching 
1 kb. Unfortunately, the 454 platform is not accurate when 
it comes to sequencing long homogeneous nucleotide runs, 
resulting in a high chance of a measured insertion or deletion 
in these regions.

Illumina’s platform (originally owned by Solexa) was the 
next product out on the market. In this method, the genomic 
DNA is fragmented to a desired size (less than a 1 kb) 
and adaptors are ligated to either end in a similar manner 
to Roche’s method. These fragments are then chemically 
attached to a glass slide covered in complementary 
oligonucleotides of both primers called a flow cell. A method 
called bridge amplification (Figure 1) is then used to amplify 
the DNA fragments.8 This amplification results in copies of 
the original fragment being arranged in clusters around the 
flow cell. These clusters are then sequenced one nucleotide 
at a time by washing with a buffer containing fluorescently 
tagged, reversibly terminating nucleotides.9 The reversibly 
terminating nucleotides allow all four nucleotides to be 
washed over at once as only one can be incorporated into 
the sequence while the fluorescent tag is still attached; each 
nucleotide has a different colour tag. The colour of each 
cluster is then recorded, the fluorescent tag removed and 
the next wash commenced.10 The fragment can be sequenced 

from both of the primers, resulting in two sequences with 
a known number of nucleotides between them, depending 
on the initial fragment size (Table 1). This method is called 
a paired-end read and can be used to partially compensate 
for the short read lengths in de novo assembly. Read lengths 
vary between 100 bp and 150 bp depending on the platform, 
with a length of 250 bp to be introduced on the MiSeq 
platform in 2012. 

SOLiD sequencing, the third well-established next generation 
sequencing method, was developed by Applied Biosystems 
and then later by Life Technologies. The DNA fragments are 
amplified in a similar manner to that of Roche’s system (bead 
emulsion PCR),11 but the actual sequencing happens in a very 
different manner. Instead of sequencing by synthesis, SOLiD 
uses the binding of eight-base oligoprimers to differentiate 
between nucleotides on the DNA fragment. Although an 
oligoprimer consists of eight nucleotides, six nucleotides are 
degenerate, leaving only two that are specific to the query 
sequence (the two closest to the 3’ end; Figure 2a). Thus 
16 oligoprimers are supplied in each wash (all possible 
dinucleotide combinations). The nucleotides closest to the 5’ 
end are marked with one of four fluorescent dyes (with four 
dinucleotide combinations per colour; Figure 2b).

In the first wash of the SOLiD sequencing procedure, the 
appropriate oligoprimer is ligated to an initial universal 
primer (n) that is complementary to the primer ligated on the 
DNA fragment and used for amplification (Figure 3). Once 
the fluorescent signal is recorded, the last three nucleotides 
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TABLE 1: A summary of five of the predominant sequencing platforms for de novo sequencing: 454 FLX +, HiSeq2000, SOLiD, Ion Torrent and PacBio RS. 

Platform

454 FLX+ HiSeq2000 SOLiD 5500XL Ion Torrent (318 chip) PacBio RS

Company Roche Illumina Life Technologies Life Technologies Pacific Bioscience

Nucleotides per run 700 Mbp 540–600 Gbp 180 Gbp 800 Mbp 5–10 Mbp

Read length 700 bp 2x100 bp 75+35 bp 200 bp 10 Kbp

Mated-pairs 2x150 bp 2x100 bp 2x60 bp N/A N/A

Run time 23 h 11 days 12–16 days 4.5 h 2 h

Reagent cost per Mbp $7 $0.04 $0.07 $1 $7

Source: Data was obtained either from the websites of the platforms or from Glenn6 and was correct as of March 2012.
Read lengths with an ’x’ or a ‘+’ refer to pair-ended reads.
The costs given are based on maximum read length, and do not include charges such as labour. They should be used only as a rough guideline of the relative differences in the cost of sequencing 
on these different platforms.

FIGURE 1: The mechanism of Illumina’s bridge amplification. The process shown is repeated until DNA fragments form dense clusters. The green and red regions show 
the two primer sequences ligated to the blue DNA fragments. Primers that are complementary to these regions, and which are attached to the platform, are denoted in 
the cognate colour with spots. Once amplification is complete, the fragments can be sequenced from either of the two platform primers (i.e. the primers indicated by the 
spotted regions) or from both to produce paired-end reads.
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(which contain the fluorescent dye) are cleaved off and 
another wash of oligoprimers is applied. This process is 
repeated until the DNA fragment is completely covered by 
oligo remnants. The now double-stranded DNA is denatured 
and the oligoprimer remnants are discarded. The entire 
process is repeated four more times, but each time with 
a slightly smaller initial primer (n-1, n-2, etc.). In this way, 
each nucleotide is analysed twice by dinucleotide probes 
(Figure 3) and results in a sequence (referred to as colour 
space) that is directly translatable to genetic code as long 
as the first nucleotide is known, which it must be because 
the second sequencing reaction is anchored with an initial 
universal primer at n-1 (Figure 3). The advantage of this 
drastic departure from the more conventional sequencing 
technologies is that it is possible to differentiate between a 
single nucleotide polymorphism and a sequencing error in 

the colour space sequence. This ability is because a single 
nucleotide polymorphism affects two of the colours in 
the colour space (measured twice), whereas a sequencing 
error changes only one of the colours. The platform is also 
capable of paired-end reads, but the second read of each 
pair is considerably shorter than the primary read (35 bp 
instead of 75 bp; Table 1). These shorter read lengths make 
SOLiD’s application to the de novo assembly of larger 
genomes limited.

In addition to SOLiD, Life Technologies have also acquired 
the rights to a second sequencing technology. Known as Ion 
Torrent, this platform is very similar to Roche’s 454 in many 
respects. Fragments are amplified by emulsion PCR before 
being sequenced by applying the nucleotides one at a time 
and measuring the signal strength emitted.12 What makes Ion 
Torrent different from the rest is the fact that it measures the 
change in pH from an incorporated nucleotide rather than 
a light signal, resulting in very rapid sequencing (Table 1). 
The measurement of pH change is accomplished using semi-
conductor chips and an ion-sensitive layer. Read lengths are 
currently 200 bp, but lengths of 400 bp are expected to be 
available soon. Unfortunately, because the reaction is not 
limited to the incorporation of a single nucleotide, it is subject 
to the same error in regions of homogeneous nucleotide runs 
that 454 is.

All of the aforementioned technologies amplify the DNA 
before sequencing. In addition to using time and money, this 
approach introduces an amplification bias against ‘g-c’ or ‘a-
t’ rich areas. However, there are a few sequencing platforms 
that do not amplify the target DNA. These single-molecule 
sequencers have been dubbed the ‘third generation’ (making 
amplification-dependent sequencers the ‘second generation’). 
Notably among these third-generation sequencers is the 
PacBio RS from Pacific Bioscience. The PacBio RS rapidly 
sequences long individual fragments (10 kb) using a system 
it calls SMRT (single-molecule real-time) technology; (Table 1).12 
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FIGURE 2: SOLiD oligo primer design. (a) The structure of an 8-mer oligoprimer 
used for SOLiD sequencing. The cleavage site (dotted line) allows for the removal 
of the fluorescent signal (star) which is necessary before the next oligoprimer 
can be added. (b) A chart of how colours are allocated to SOLiD primers based 
on the first two nucleotides. The order in which the chart is read (rows or 
columns first) is irrelevant: B (blue), G (green), O (orange), R (red).

FIGURE 3: SOLiD sequencing procedure. Every nucleotide is measured twice with the use of repeated washes and primer application in SOLiD sequencing to get a final 
sequence read. Note that the first nucleotide in the final read (A in bold) is from the initial primer and has a known identity. This known identity is required to decipher 
the colour space.
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In this system, DNA polymerases attached to a detection 
surface are each given a single DNA strand. This strand is 
then sequenced by measuring the signal given off whenever 
a phospholinked nucleotide is incorporated into the strand. 
Each nucleotide is tagged with a different colour which 
is cleaved when it is added to the existing strand. There is 
therefore no need for washes or terminating nucleotides. 
The nucleotide suspension is simply applied to the plate 
and the sequencing commences. This process therefore 
results in much longer read lengths than the other currently 
available platforms, but at a much higher error rate (15%).6 
In an effort to try and account for this error rate, in addition 
to sequencing long single strands, Pacific Bioscience offer a 
service where they take a shorter piece of double stranded 
DNA (2 kb for example), and add hairpin adaptors onto the 
end. This addition has the effect of circularising the DNA, 
which allows it to be sequenced repeatedly by the DNA 
polymerase, dramatically reducing the error rate. This is 
known as circular consensus sequencing. Pacific Bioscience 
will not be the only sequencer with 10-kb read lengths for 
long – soon the sequencers GridION and MinION from 
Oxford Nanopore Technologies will join them.13

For lack of these long read lengths, the original three 
technologies (Illumina, 454 and SOLiD) are at least able to 
compensate with the creation of mate-paired reads. Mate-
paired reads can be thought of as paired-end reads with a very 
long gap between them (several kilobases). However, mate-
paired reads require a more complicated library construction 
than do normal genomic reads. With mate-paired reads, the 
genome is initially fragmented to allow for large gaps of a 
desired length. These fragments are then circularised with 
biotinylated primers (Figure 4). The circular DNA is then 
re-fragmented and the biotinylated regions are purified out, 
resulting in two sections of DNA that were once separated 
by kilobases of DNA on the same sequencable fragment. The 
incorporation of mate-paired reads is required for definition 
of the longer repetitive elements in a eukaryotic genome and 
is necessary for analyses into structural variation.

For more information on the chemistry of the different 
techniques, we recommend the reading of Metzker’s12 review 
and for more information about individual platforms offered 
by each company and their associated prices, we refer you 
to Glenn6.

De novo genome assembly
Once the genome has been sequenced, the millions of short 
sequence reads need to be assembled into an informative 
model of the genome. However, the extremely large number 
of reads can make the computation very taxing. A good 
assembly algorithm therefore needs to be as efficient as 
possible within a computer’s processing power, without 
sacrificing too much accuracy.

The compromise between speed and accuracy is commonly 
helped through the creation of k-mers.14 K-mers are created by 
breaking down the existing sequences into shorter sequences 
of length ‘k’. These allow the data to be summarised and 
compacted in such a way that commonalities can be identified 

and links drawn between sequences. K-mer information is 
used to varying degrees in different algorithm strategies and 
programs. Overlap assembly strategies such as Greedy and 
Overlap/Layout/Consensus use k-mer data to efficiently find 
the best overlap amongst the sequences, whereas Eulerian 
strategies use the k-mers to create a de Bruijn graph.15

Greedy algorithm
The first short-read genome assembly programs (for 
example SSAKE,16 SHARCGS17 and VCAKE18) were based 
on the Greedy algorithm (Table 2).14 This algorithm works 
in an intuitive manner by finding high scoring overlap 
sequences and joining them together. In this way, contigs 
are produced and extended. However, the localised view 
that this procedure maximises, opens it up to several pitfalls. 
For example, repetitive elements within the genome, if not 
treated with care, can cause hybrid contigs to be formed 
(Figure 5a).3 To address this issue, most Greedy algorithms 
either stop extension if several good hits are found that do 
not agree with each other (i.e. they do not share sufficient 
commonalities) or do not take into account elements in 
the overlap that are overly represented within the data set 
(suggesting it is found multiple times in the genome).15 The 
local maximisation also tends to lead to solutions that are not 
globally optimal (Figure 5b). This tendency to get caught in 
local maxima limits the use of this algorithm to small simple 
genomes.19

Overlap/Layout/Consensus algorithm
The Overlap/Layout/Consensus method is a three-step 
process that effectively combines the overlap idea of the 
Greedy algorithms with a global view point to prevent 

FIGURE 4: Creation of mate-paired libraries for Illumina. A long DNA fragment 
is labelled with biotinylated deoxyribonucleotide triphosphate on either end, 
before being circularised. The circularisation brings the two furthest ends of 
the DNA fragment (dark and light grey) next to each other. The DNA is then 
re-fragmented and the piece containing the two furthest ends is purified out 
using the biotin markers. The new fragment (which is a reasonable length to 
sequence) has primers ligated onto the ends and is ready for amplification and 
sequencing as normal. Mate-paired read construction by the other sequencing 
companies follows a similar pattern.

DNA fragment

Biotin incorporated onto ends

Circularise DNA

Fragment DNA and purify out biotinylated sequences

Ligate on primers for amplification and sequencing
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local maxima from being pursued (an Overlap/Layout/
Consensus algorithm would have successfully put together 
the correct sequence in Figure 5b for example).15 The first step 
of the method identifies overlaps between all the sequences. 
This pairwise alignment, while streamlined with the use of 
indexing and k-mers, can still be computationally expensive 
in larger data sets. The sequences are then mapped out on 
a graph as nodes and connected according to the overlap 
information (layout step). This step is kept computationally 
efficient as actual sequence composition is not considered.14 
Ideally a single path, called the Hamiltonian path, is identified 
that goes through all the sequences exactly once (or rather one 
path per chromosome). In reality, however, this single path is 
prevented by insufficient coverage, sequencing errors, genetic 
polymorphism and unresolvable elements caused by repeated 
elements. Once the optimum path has been derived, sequence 
identity is decided by compiling evidence for each nucleotide in 
the consensus step. Examples of Overlap/Layout/Consensus 
programs are Newbler,7 Edena20 and CABOG21 (Table 2). 

The computational requirements of this strategy are 
proportional to the number of sequence reads in the data 
set. These programs have therefore not done well with the 
exponential increase in next generation sequencing data. 
While programs like Newbler and CABOG have been 
used to assemble large genomes, these assemblies were 
supplemented by long Sanger reads. Such programs would 
struggle to scale up to the hundreds of millions of reads that 
would be necessary for a large de novo assembly consisting 
purely of next generation sequencing data.19 The strategy 
should not, however, be dismissed yet. A new take on the 
method, called SGA (String Graph Assembly), was recently 
developed by Simpson and Durbin22; SGA uses a highly 
effective compression technique that allows for the assembly 
of genomes with minimal RAM usage. 

De Bruijn algorithm
The second type of graph assembly technique is based 
on the formation of de Bruijn graphs (also known as an 
Eulerian algorithm).23 These graphs are formed from the 
creation of k-mers of the original sequences. These k-mers 
are then connected to k-mers that they overlap with at k-1 
sites. In this way, the algorithm avoids the computationally 
difficult global pairwise overlap step used in the Greedy and 
Overlap/Layout/Consensus strategies as the overlap is 
implicit (Figure 6a). However, the conversion of sequences 
into k-mers does result in the loss of some information. This 
loss can cause the algorithm to create links between two 
unrelated sequences that it then cannot dismantle again 
without consulting the original reads (Figure 6b).14 The larger 
the value of ‘k’ and the smaller the genome, the fewer false 
associations will be made in the de Bruijn graph. The value 
of ‘k’ cannot be made too large, however, as sequences still 
need to share ‘k-1’ nucleotides in the real overlap in order to 
be associated.

Once the complete de Bruijn graph has been created from 
the k-mers, a path that uses every node (called the Eulerian 
path) must be drawn through the system. As a consequence 
of collapsed nodes (as seen in Figure 6b), there are normally 
several possible paths through the graph. In order to separate 
the true path from the false ones, sequence information 
needs to be added back into the network (Figure 7).14 Once 
the best path has been identified, the contig sequence can be 
read from the k-mer identities. Examples of de Bruijn graph 
programs are Euler,23 Velvet,24 ABySS,25 AllPaths26 and SOAP 
de novo27 (Table 2). These programs are appealing because, 
theoretically, the computational requirements increase with 
genome size and not with the number of reads. The fact that 
computational requirements are independent of the number 
of reads is important because (without sequencing error) a 
genome will be broken down into the same de Bruijn graph, 
regardless of the coverage. Of these programs, Allpaths 
LG and SOAP de novo have been designed specifically to 
deal with large genomes and were ranked first and second, 
respectively, in an open assembly competition hosted by 
an independent third party, with SGA being placed third.28 
SOAP de novo was also the program used to assemble the 
giant panda genome.

TABLE 2: A summary of freely available programs that can be used for de 
novo genome assembly, including the conditions under which the programs 
should be used.

Assembly 
program

Algorithm Preferred 
sequencer

Parallelisable Target

SSAKE, SHARCGS 
and VCAKE

Greedy Illumina No Small 
genomes

Edena Overlap/Layout/
Consensus 

Illumina No Small 
genomes

Newbler Overlap/Layout/
Consensus 

454 No Large 
genomes

CABOG Overlap/Layout/
Consensus 

Mixed No Large 
genomes

SGA Overlap/Layout/
Consensus 

Illumina Yes Large 
genomes

Euler De Bruijn 454 + Sanger No Small 
genomes

Velvet De Bruijn Illumina No Small 
genomes

SOAP de novo 
and AllPaths

De Bruijn Illumina No Large 
genomes

ABySS De Bruijn Illumina Yes Large 
genomes

FIGURE 5: Limitations of the Greedy algorithm. (a) Repetitive elements (ATn 
in this case) common throughout the genome lead to large overlap scores 
and linkage of unrelated sequences in a Greedy algorithm. The first potential 
overlapping sequence in the diagram starts farthest into a repetitive element 
and is therefore given the highest score and added to the contig (overlapping 
nucleotides are underlined). (b) Duplicated regions (represented in green) 
can prevent the Greedy algorithm from finding the true sequence by having a 
large overlapping region (shown in red) as a result of a common ancestral past. 
Here, fragments 2 and 6 have a larger overlap with each other than with either 
fragment 3 or fragment 5, causing a mis-assembly despite the fact that there 
was only one path through the whole sequence.

a

b

Potential overlaps:

ATATATGGATACCAG…

TATATCGAGAACGGA…

Contig being extended:

…ACGATGCGATATATAT TATAGACAGGTTAAC…

Actual sequence

Resultant reads

Calculated overlaps

  1)   3) 5)

2) 4) 6)
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6) 2)
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1) 2) 6)
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Dealing with sequence errors
Many of the problems faced by genome assembly algorithms, 
particularly those using a de Bruijn graph, are convoluted by 
the existence of sequencing errors.14 Although low, different 
technologies have different error rates (reported on their 
respective websites). For example, SOLiD sequencing has an 
initial accuracy of 99.94% for each nucleotide. This accuracy 
is reduced to 99% by the 35th base pair. In comparison, the 
454 sequencer’s accuracy decreases to 99% only at the 400th 
base pair. Reports on the Illumina platform indicate that 80% 
of nucleotides are 99.9% accurate. Even with these levels 
of accuracy, sequencing a genome will result in anywhere 
between hundreds of thousands to tens of millions of incorrect 
bases. The probability of any one nucleotide being incorrect 
is reported with each call by the sequencer. Although this 
information is useful for determining the overall quality of 
a sequencing run, the inclusion of it in the actual genome 
assembly is a computationally costly endeavour.19 Because of 
the cost, most assembly programs choose to ignore data that 
include the probability of the error (e.g. Edena, Velvet, SOAP 
de novo and SSAKE).

Theoretically, Greedy algorithms are well protected from 
errors in a high-coverage situation as sequences without 
error should be incorporated preferentially to those with an 
error (because of a higher overlap score). Overlap algorithms 
in general also avoid using error probabilities by not 
requiring a 100% sequence similarity, allowing the error to 
be passed over and resolved later in the consensus step. The de 
Bruijn graph method on the other hand, does not have one of 
these inherent mechanisms to deal with sequence errors.14 If 
unaddressed, sequence errors can cause excessive complexity 
in the de Bruijn graph by adding so-called ‘bubbles’ (which 
occur when an otherwise linear path has two possible central 
sequences) and ‘spurs’ (which occur when a sequence has 
two possible starts or ends) to an otherwise unambiguous 
path (Figure 8) or by causing collapsed nodes (as in Figure 
6b). The creation of bubbles and spurs is the most common 
outcome of an error as 4k should be much larger than the 
genome, meaning novel k-mer creation is the most likely 
outcome of an incorrect base. The creation of novel k-mers 
makes sequence errors especially troublesome in de Bruijn 
graphs, as one error can potentially result in ‘k’ new k-mers 
in a graph. However, not all bubbles and spurs are the result 
of sequencing errors; bubbles and spurs can also be caused 
by single nucleotide polymorphisms, microsatellites and 
tandemly duplicated areas.

Methods for dealing with errors normally revolve around 
this concept of original k-mer creation. The Euler method, 
for example, plots the k-mers versus their frequency in the 
data,23 creating a bimodal graph, with one peak representing 
the real k-mers observed and a second peak (lower on the 
graph) representing the new k-mers created by sequencing 
errors. A point between these modes is chosen and 
everything above this point is trusted and everything below 
the point is distrusted. A similar mechanism is employed 

in many programs. Suspicious k-mers can either be altered 
to a more likely k-mer (Euler) or discarded (Velvet). This 
approach does, however, mean that true k-mers with a very 
low coverage will be adjusted or disregarded and certain 
errors that happened to result in a common k-mer will be 

a
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Before After

FIGURE 7: Paired-end reads make up for short read lengths during assembly. 
(a) An ambiguous path is untangled using a paired-end read that spans the 
uncertain area. (b) The length of a paired-end read is used to untangle an 
ambiguous de Bruijn graph.

a
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FIGURE 6: The pros and cons of de Bruijn graphs. (a) Two sequences with 
overlapping regions in red (i) are broken down into k-mers (ii) that are then 
linked in a de Bruijn graph (iii), which correctly links the two sequences without 
having to compute an overlap score. (b) Two sequences with a common k-mer 
are linked in a de Bruijn graph without any real overlap. The algorithm now has 
four possible sequences instead of two.

Sequence 1 Sequence 2

(ii)

(iii)

(i) AACGTAGT CGTAGTTG

AACGT ACGTA CGTAG  GTAGT CGTAG GTAGT TAGTT AGTTG

AACGT ACGTA CGTAG GTAGT TAGTT AGTTG

Sequence 1

Sequence 2

FIGURE 8: Sequencing error complications in a de Bruijn graph. (a) A sequencing 
error (underlined) in the middle of a read causes a new path (in red) through the 
de Bruijn graph known as a bubble. (b) A sequencing error (underlined) at the 
beginning or end of the read causes an alternative premature start or end site (in 
red) to the contig. The numbers underneath the k-mers show how many times 
each appears in the data set (the frequency would vary more in a real sample).

A B C D

E C F G

A B D

E
C

F G

1 1 1 1

30

29 29 29 29

30

1 1

30 30

29 29 29 29

AACT

ACTG CTGA TGAG GAGC

ACTC CTCA TCAG CAGC

AGCC

ACTC CTCA

CAAC AACT

ACTG CTGA TGAG GAGC

a

b



Review Article

S Afr J Sci  2012; 108(11/12)  http://www.sajs.co.za

Page 7 of 8

accepted. Once a graph has been assembled, there are several 
simplification algorithms that trim spurs and collapse 
bubbles to make informative contigs.14 This necessary step 
does unfortunately result in a loss of real information like 
single nucleotide polymorphisms and occasionally even 
entire exons.29

Conclusion
Given their differences, the question arises as to which 
assembler and sequencing platform should be used under 
which conditions. This question is not an easy one to answer. 
The main variables to consider are the budget for sequencing, 
the computer processing power and the genome size. The 
decision is made more difficult by the fact that sequencer 
technology does not stand still – new assembly programs 
are constantly being released and old programs are being 
updated. Generally though:

•	 SOLiD’s advantage of being able to identify single 
nucleotide polymorphisms does not make up for its 
shorter read length which makes the de novo assembly of 
complex genomes difficult.

•	 Sequencing on Roche’s 454 is expensive, but it has a good 
read length, which is especially important for the de novo 
assembly of complex genomes.

•	 Pacific Bioscience has surpassed 454 in read length for a 
similar cost.

•	 Illumina’s platform provides a good balance between 
read length and cost; and is the most widely used for such 
projects.

•	 Paired-end reads on the Illumina or SOLiD platforms are 
worth the extra cost.

•	 Ion Torrent offers fast sequencing turnover combined with 
a reasonable read length; however, the lack of paired-end 
reads limits it to smaller genomes.

•	 Greedy algorithms should not be used unless computer 
processing power is limited and the genome is simple.

•	 With the exception of SGA, the de Bruijn graph programs 
cope better with the large numbers of short reads that 
Illumina or SOLiD will produce.

•	 Having a portion of your coverage as either mate-paired 
reads or long third-generation reads will significantly 
decrease the fragmentation of the final assembly.

•	 Extreme guanidine–cytosine contents can affect the 
amplification efficiency of DNA and thus negatively 
impact second-generation sequencing.

•	 Check to see whether a potential reference genome exists 
before attempting de novo assembly (http://www.ncbi.
nlm.nih.gov/genome/browse/).

If you can afford it, a good strategy is to combine data from 
two different platforms (for example Illumina and Pacific 
Bioscience), which would compensate for each method’s 
deficiencies. This strategy gives the best chance of a complete 
and accurate genome description. However, even under the 
best conditions, the de novo assembly of large genomes will 
be fractured and incomplete to some degree. Nevertheless, 
this deficiency should not deter researchers from taking 
advantage of these new sequencing technologies to assemble 

the genomes of diverse plants and animals, even if they are 
incomplete, to answer important biological and evolutionary 
questions. Genome sequences, even fractured ones, are a 
wealth of potential information.
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