
Research Article

S Afr J Sci 2012; 108(11/12) http://www.sajs.co.za

Semantic query in a relational database using a local
ontology construction

Authors:
Saeed M. Sedighi1

Reza Javidan2

Affiliations:
1Department of Computer
Engineering, Zanjan Branch,
Islamic Azad University,
Zanjan, Iran

2Computer Engineering
Department, Islamic Azad
University-Beyza Branch,
Fars, Iran

Correspondence to:
Saeed Mohamad Sedighi

Email:
saeed.mohamadsedighi@
gmail.com

Postal address:
Fars province, Shiraz, Iran
7146778615

Dates:
Received: 29 Jan. 2012
Accepted: 20 June 2012
Published: 31 Oct 2012

How to cite this article:
Sedighi SM, Javidan R.
Semantic query in a
relational database using a
local ontology construction.
S Afr J Sci. 2012;108(11/12),
Art. #1107, 10 pages. http://
dx.doi.org/10.4102/sajs.
v108i11/12.1107

© 2012. The Authors.
Licensee: AOSIS
OpenJournals. This work
is licensed under the
Creative Commons
Attribution License.

Introduction
The use of a structured query formulation language is one way to retrieve information in
information management systems. Formulated queries allow the selection of data under
particular constraints. In contrast to menu driven or query by example (QBE) information access
methods,1 writing structured queries is a powerful method to access data because it allows end-
users to formulate complex database queries. However, this method consequently forces end-
users to learn specialised query languages. Therefore, structured query formulation, with the
exception of a few visual query generation approaches, is difficult for most end-users. Despite
the variety of approaches that exists, three major questions are common when information
extraction is requested from available data: (1) what type of request can a specific system handle,
(2) how can visual interfaces be provided to generate data requests and (3) how can the user
be assisted to formulate queries in order to retrieve more accurate information? Nowadays,
information technology has been widely adopted in resolving the first two problems by
providing some theoretical and practical solutions using artificial intelligence techniques and
graph theories, especially by providing visual tools to generate specific queries. However, in the
use of computational techniques, there is inadequate information to provide users with query
formulation services using domain ontologies. Laborda and Conrad2 introduced a representation
format for both schema and data information based on Web ontology language (OWL). The
advantage of their approach is obvious – relational data is able to be processed for Semantic
Web applications using built-in functionality like query languages or reasoning mechanisms. In
fact, with their approach, Semantic Web applications no longer need to implement their own in
relation to semantic mapping.

In this paper, we propose an approach to learning OWL ontology from data in relational
databases. We then investigate the combination of OWL ontology and an exemplary semantic
query language – relational database query language (RDQL) – in order to achieve an alternative
for ordinary query using structured query language (SQL). In other words, we aimed to determine
if combining OWL ontology with such a query language would lead to the same results as a
normal relational query would. Because SQL has been extended repeatedly in its expressiveness
during the preceding decades, a direct comparison of RDQL and SQL would be unfair. Therefore,
the present analysis has been limited to whether the combination of OWL ontology and RDQL is
capable of providing the same results as the relational algebra.

Page 1 of 10

Semantic Web refers to a Web of linked data in which data can be shared and reused, allowing
more uses than the traditional ‘Web of documents’. However, most of the information on
the Web is stored in relational databases and such databases cannot be used by the Semantic
Web. Relational databases can, however, be used to construct an ontology as the core of the
Semantic Web. We propose a new approach which enables Semantic Web applications to
access data actually stored in relational databases using a corresponding ontology. In our
approach, domain ontologies can be used to formulate relational database queries in order to
simplify the data access of the underlying data sources. The method we propose involves two
main phases: the construction of a local ontology from a relational database and a semantic
query in a relational database using relational database query language (RDQL). In the first
phase, we construct a Web ontology language ontology from data in a relational database. In
the second phase, we propose a technique to automatically extract the semantics of relational
databases and transform this information into a representation that can be processed and
understood by a machine. The method proposed is simulated and implemented using Jena
and the simulation results show the effectiveness of the proposed approach. Therefore, we
propose RDQL as a real alternative to the commonly used structured query language access
to relational databases.

mailto:saeed.mohamadsedighi@gmail.com
mailto:saeed.mohamadsedighi@gmail.com
http://dx.doi.org/10.4102/sajs.v108i11/12.1107
http://dx.doi.org/10.4102/sajs.v108i11/12.1107
http://dx.doi.org/10.4102/sajs.v108i11/12.1107

Research Article

S Afr J Sci 2012; 108(11/12) http://www.sajs.co.za

Related work
Managing ontology data alone is not a new topic and several
systems have been developed during the past years.3,4,5 Some
of these systems store ontology data in a file system, making
querying such data very difficult.4 Other systems transform
the ontology data into RDF form and store the RDF triples (the
subject–predicate–object statements) in a relational database.
Processing of ontology-related queries in these systems is
typically done by an external middle ware (wrapper) layer
built on top of a database management system (DBMS)
engine. However, DBMS users cannot reference ontology
data directly.

Querying relational data together with their semantics
encoded in ontology is an emerging topic that has attracted
much attention recently. A method to support ontology-
based semantic matching in relational database management
systems (RDBMS) using SQL directly has been proposed.6
In this method, ontology data are pre-processed and stored
in a set of system-defined tables. Several special operators
and a new indexing scheme are introduced so that a
database user can reference the ontology data directly using
the new operators. The main drawback of this approach
is that semantic queries involving the ontology data are
usually difficult to write and costly to process (in terms of
both processing time and storage overhead) as a result of
the graphical structure of the ontology data and the need
for reasoning (i.e. transitive closure computation) on the
ontology data.

Calvanese et al.5 proposed virtual view as a way to represent
relational data together with their related ontology data in a
relational view. However, there are three requirements in the
application of virtual view: (1) language extensions to SQL
must support the creation and use of virtual view, (2) the
DBMS engine must support native XML data (together with
relational data) and the processing of the virtual view related
operators and (3) the user must understand the complex
ontology data and their relationship with the base relational
data completely.

Query by example (QBE) is a well-known concept in the
database community. It was first proposed by Zloof in the
mid 1970s7,8 as a query language that can be used by database
users to define and query a relational database. QBE is quite
different from SQL in that it is a graphical query language.
Its interface is usually virtual tables where the user can enter
commands, examples, etc. Since QBE was presented most
of the research on QBE has focused on the enrichment and
extension of QBE as a query language and on developing
efficient methods for generating and processing the queries
defined by the examples.5

In commercial database products, QBE is widely used
as a graphical front-end for RDBMSs.1 It is also used as a
convenient interface for users to specify queries for image,
video and document databases, and various techniques
have been studied.2,5,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 There are
two common characteristics in all previous work on QBE:
the examples are used to specify a query that will be

generated and the generated query is a ‘normal’ query in
that all the query conditions (which may be in the form of
similarity measures) are defined on the base attributes in the
underlying tables.

The semantic QBE problem addressed by Zloof is very
different from the traditional QBE problem. Firstly, as a result
of the complexity of the semantic information associated
with the data in the base relational tables, the real query
associated with the user’s intention which is specified by the
input examples is difficult (or impossible) to capture by a
traditional SQL query. Secondly, in the described problem,
the underlying ’query’ is defined not only by the base
attributes in the relational table, but also by the semantics of
the base data encoded in the ontology and the connections
between the relational data and the ontology data.

First phase : Local ontology
construction
Databases include conceptual models and information
resources that together can be taken as the conceptualisation
repository of ontology. Based on analyses of the formal
corresponding relationships between relational databases
and OWL ontologies: a relational database contains several
tables, a table contains several fields and records are the
collection of a field’s value, whereas an OWL ontology
contains several classes, a class contains several properties
and instances are the collection of property values. The
formal corresponding relationships between tables, fields
and records in relational databases and classes, properties
and instances in OWL ontologies make it possible to convert
one schema to another. The corresponding relationships
between relational database components and ontology
components are shown in Figure 1.

The use of existing relational databases to generate ontology
automatically is the main objective of the proposed approach,
in order to reduce the manual tedious work, save developing
time and improve the efficiency of ontology. The building
of a local ontology architecture from a relational database
(Phase 1) is shown in Figure 2.

Page 2 of 10

FIGURE 1: Relational database components and their corresponding ontology components.

Relational database

Table

Column

Tuple

Table relationship

Ontology

Class

Object property

Individual

Data type property

FIGURE 1: Relational database components and their corresponding ontology
components.

Relational database Ontology

Tuple Individual

Data type property

Object property

Class

Column

Table relationship

Table

Research Article

S Afr J Sci 2012; 108(11/12) http://www.sajs.co.za

Page 3 of 10

Construction of a local ontology from a relational database
includes the following steps:

•	 Extraction of metadata from the relational database by
Java database connectivity components

•	 Analysis of the metadata from Step 1 and transfer of the
database model to the ontology model by transformation
rules

•	 Transfer of the ontology model to the OWL ontology by
the Jena framework.

Ontological representation of an entity
containing domain metadata
As shown in Figure 3, an entity type E (containing domain
metadata) in a relational schema R(E) is represented as a class
in the ontological model. Here, each distinct column value is
stored as a subclass of the entity class. An object property is
created which points to the class as a property range. This
rule is only applicable to a standalone entity and does not
apply for the representation of domain metadata based on
other cardinal relationships (e.g. one-to-one or one-to-many).

One-to-one relationships
In one-to-one (1:1) relationships, R is a relationship in a
database D that links an entity type E1 in D to the entity
type E2 in D, with P1 as the primary key of E1 and P2 as the
primary key of E2; and R is a one-to-one relationship type
between the entity types E1 and E2. Figure 4 shows entities
E1 and E2 in a relational schema R(E). Here, both R(E1) and
R(E2) contain domain metadata and there is a one-to-one
relationship from R(E1) to R(E2). In such a situation, both
R(E1) and R(E2) are required to be represented as ontology
classes. For R(E1), an ontology class is created for entity type
R(E1) and each entity of the entity type is represented as a
subclass of the entity type class. For R(E2), two situations
are possible: (1) a 1:1 generalisation (specialisation, ‘is-a’)
relationship from R(E1) to R(E2), as shown in Figure 4a and
(2) any other ID-based 1:1 relationship (e.g. ‘has-a’ or ‘part-
of’) from R(E1) to R(E2) (as shown in Figure 4b).

For an ‘is-a’ relationship as shown in Figure 4a, each column
value (i.e. col-3) stored as a foreign key value is represented
as a subclass (i.e. class-111, class-121 etc.) of the parent entity
class (i.e. class-11, class-12 etc.). In this way, all of the R(E2)
entities are represented under a generalised class (class-1).
The parent class (class-1) is defined as a range class for the
related object property in order to have each foreign key value
mapped to a common object property. In addition, similar
entities could be further defined under one generalised
parent class, if needed. An example of such a situation,
shown in Figure 4a, is ‘Antibiotic drugs’ as the parent class
and the drug ‘Actinomycin’ as an (is-a) antibiotic drug.

For all other types of ID relationships, as in Figure 4b, an
ontology class (class-2) is created for entity type R(E2) and
the column values (i.e. col-3) stored against each foreign key

 Class

Ontology model

Object property

Data type property

 Tables

Database model

Columns

Table relationship

Primary keys Foreign keys

Relational
database

JDBC

Transformation rules

Jena framework

JDBC, Java database connectivity; OWL, Web ontology language.

FIGURE 2: The construction of a local ontology from a relational database.

Relational database

JDBC

Tables Columns

Primary keys Foreign keys

Table relationship

Database model

Class

Object property

Data type property

Transformation rules

Jena framework

Ontology model

OWL ontology

Entity R (E1)

ID Column

1

2

3

R1

R2

R3

Object property

Ontology class 1

subclass 11

subclass 12

subclass 13

Entity representation as class
Class and subclass relationship
Ontology class-property relationship

FIGURE 3: Ontological representation of an entity type E.

Research Article

S Afr J Sci 2012; 108(11/12) http://www.sajs.co.za

Page 4 of 10

are mapped to a subclass (i.e. class-21, class-22 etc.) of the
entity type class (class-2). In order to link class-1 (primary key
values) with class-2 (foreign key values), object properties are
used. In order to support the relationship between domain
entities within the ontology, each subclass of class-2 (i.e.
foreign key column values) is linked to an object property
(i.e. objprop-21, objprop-22 etc.). All these object properties
are defined by a generalised property (object property-2).
Here, the individual properties (objprop-21, objprop-22 etc.)
link the subclasses of class-1 (i.e. subclass-11, subclass-12
etc.) to the subclasses of class-2 (i.e. subclass-21, subclass-22
etc.) through property domain and range relationships. This
is how the links are established between primary key row
instances (for which the corresponding class is defined as
a domain class) and foreign key row instances (for which the
corresponding class is defined as a range class). An example
of such a situation, as shown in Figure 4b, is a country ‘France’
that has a (has-a) capital ‘Paris’.

One-to-many relationships
In Figure 5, both R(E1) and R(E2) contain domain metadata
and there is a one-to-many (1:M) relationship between R(E1)
and R(E2). This situation is similar to 1:1 mappings, with the
only major difference being the ontological representation of
foreign key values for entity R(E2).

In the case of an is-a relationship, as shown in Figure 5a,
the column values (i.e. col-3) stored against a foreign key
are represented as subclasses of the parent entity class (i.e.
class-111 and class-112 for class-11 and class-121 for class-12
etc.). For all other types of ID relationships, as in Figure 5b,
column values (e.g. col-3) stored against one common foreign
key are represented under a parent class having these values
as subclasses (i.e. class-211 and class-212 are defined as
subclasses for class-21 etc.). The parent classes (i.e. class-21,
class-22 etc.) are represented by one generalised class
(class-2) of R(E2). Here, the object properties are created for
each distinct foreign key value. All of these object properties
are defined by a generalised property (object property-2).
Individual properties (objprop-21, objprop-22 etc.) link the
subclasses of class-1 (i.e. subclass-11, subclass-12 etc.) to
the subclasses of class-2 (i.e. subclass-21, subclass-22 etc.)
through property domain and range relationships. This is how
links are established between primary key row instances (for
which the corresponding class is defined as a domain class)
and foreign key row instances (for which the corresponding
class is defined as a range class). An example of such a
situation, as shown in Figure 5b, is a country ‘France’ that has
cities ‘Paris’, ‘Lyon’ etc.

Many-to-many relationships
In many-to-many (M:N) relationships, R is a relationship in a
database D that links an entity type E1 in D to the entity type
E2 in D, with P1 being the primary key of E1 and P2 being
the primary key of E2; R is a many-to-many relationship type
mapped to a schema relation denoted by R(R) = P1 U P2.

Figure 6 shows the entities E1 and E2 in a relational schema
R(E) with a many-to-many relationship between them. In

FIGURE 4: A schematic showing the 1:1 relationships between entities E1 and E2 for (a)

generalisation relationships and (b) other ID relationships.

FIGURE 4: A schematic showing the one-to-one relationships between entities
E1 and E2 for (a) generalisation relationships and (b) other ID relationships.

a

Ontology class 1

FIGURE 4: A schematic showing the 1:1 relationships between entities E1 and E2 for (a)

generalisation relationships and (b) other ID relationships.

FIGURE 4: A schematic showing the 1:1 relationships between entities E1 and E2 for (a)

generalisation relationships and (b) other ID relationships.

Cardinality relationship (is-a/has-a)
Entity representation as class

Class and subclass relationship
Ontology class-property relationship

Entity R (E1)

ID Column
1
2
3

R1
R2
R3

object
property 1

Property domain

subclass 11

subclass 12
subclass 13

One-to-one relationship Generalisation
(specialisation, is-a

relationships

ID

1

2

3

R1

R2

R3

Col-2 (FK) Col-3

1

2

3

subclass 111
subclass 121

Entity R (E2)

Entity R (E2)

One-to-one relationship Other ID relationships (e.g.
has-a, part-of)

Ontology class 2

subclass 21
subclass 22

objprop 21

objprop 22

ID Col-2 (FK) Col-3

1

2

3

1

2

3

R1

R2

R3

FIGURE 5: A schematic showing the 1:M relationships between entities E1 and E2 for (a)

generalisation relationships and (b) other ID relationships.

FIGURE 4: A schematic showing the 1:1 relationships between entities E1 and E2 for (a)

generalisation relationships and (b) other ID relationships.

FIGURE 4: A schematic showing the 1:1 relationships between entities E1 and E2 for (a)

generalisation relationships and (b) other ID relationships.

Cardinality relationship (is-a/has-a)
 Entity representation as class

Class and subclass relationship
Ontology class-property relationship

a

FIGURE 5: A schematic showing the one-to-many relationships between entities
E1 and E2 for (a) generalisation relationships and (b) other ID relationships.

b

Entity R (E1)

Other ID relationships (e.g.
has-a, part-of)

Generalisation
(specialisation, is-a

relationships)

One-to-many relationship

Entity R (E2)

1
2
3

Ontology class 1 object
property 1

Property domainR1
R2
R3

subclass 11
subclass 12
subclass 13

ID Column

1
2
3

1
1
2

R1
R2
R3

subclass 111
subclass 112

subclass 121

1
2
3

object
property 2

ID

Col-2 (FK) Col-3

Ontology class 2

objprop 21

objprop 22
subclass 21
subclass 22

subclass 211
subclass 212

subclass 221

1
1
2

R1
R2
R3

Entity R (E2)

One-to-many relationship

Col-2 (FK) Col-3

ID

b
object
property 2

Research Article

S Afr J Sci 2012; 108(11/12) http://www.sajs.co.za

Page 5 of 10

such a situation, only the entity types R(E1) and R(E2) are
represented in the ontology as classes. In practice, the day-
to-day transactions are stored with such R(R) relations. Such
relationships are not stored in the ontology as classes because
we do not store transactional data in the ontology; instead
the entity-related domain metadata are used to query such
transactional data.

Database to ontology mapping for data columns
In OWL-DL, property restrictions can be applied to both
data type properties (properties for which the value is a data
literal) and object properties (properties for which the value
is an individual). Here, ‘object properties’ link individuals
to individuals and ‘data type properties’ link individuals to
data values.

In the proposed method, table columns for which values are
data literals and do not contain domain metadata or semantics
are transformed into data type properties. This transformation
is because the table columns that contain domain metadata
or semantics are defined by class or subclass relationships or
by linking them with object properties. Therefore, in order to
specify ontology restrictions on data values, for each of the
selected table columns, a data type property is created which
links to the related ontology class as rdfs:domain. In such a
case, the rdfs:range data type of the ‘data type property’ is
defined according to the column data type. Examples of such
data columns in the medical domain are: ‘patient’s registration
year’, ‘patient’s disease duration’, ‘patient’s height’, ‘patient’s
weight’ etc. In these examples, the rdfs:domain class is ‘patient’.

Figure 7 shows an entity E in a relational schema R(E) with
the attributes 1 2 , , ..., n Col Col Col belonging to entity E. Here,
R(E) is represented as an ontology class E and columns (i.e. 1
2 , , ..., n Col Col Col) are represented as data type properties
(i.e. 1 2 , , ... , n Data type Property Data type Property − − Data
type−Property) with class-E defined as rdfs:domain. The
rdfs:range data type for these ontology properties is defined
by the columns (1 2 , , ..., n Col Col Col) data type. Such a
transformation of data columns can be validated by applying
a reverse transformation, that is, by converting ontology data
type properties to relational database table columns.8 Here,
all data type properties are parsed in a series. For each parsed
data type property, a database table is located similarly to the
rdfs:domain value for data type property, and a data column is
created with the name of that property.

Second phase: Semantic query
By creating an automatic transformation mechanism from
data stored in relational databases into a representation,
which can be processed by almost any Semantic Web
application, all kinds of legacy data stored in relational
databases become an integral part of the Semantic Web.
As a result, Semantic Web applications needing access
to data stored in relational databases no longer need to
query these databases using relational query languages.
These applications can use preferred query languages like

FIGURE 6: A schematic showing the M:N relationships between entities E1 and E2.

FIGURE 4: A schematic showing the 1:1 relationships between entities E1 and E2 for (a)

generalisation relationships and (b) other ID relationships.

FIGURE 4: A schematic showing the 1:1 relationships between entities E1 and E2 for (a)

generalisation relationships and (b) other ID relationships.

Cardinality relationship (is-a/has-a)
Entity representation as class

Class and subclass relationship
Ontology class-property relationship

Object property
R1

subclass 11

One-to-many relationships

1

One-to-many
relationships

FIGURE 6: A schematic showing the many-to-many relationships between entities
E1 and E2.

Ontology class 1Entity R (E1)

subclass 12
subclass 13

ID Column

2
3

R2
R3

Ontology class 1

Object property

1
1
2

1
2
1

R11
R12
R21

R (R) = P1 U P2

ID-(E1) FK ID-(E2) FK Col-data

subclass 11

subclass 12

subclass 13

1

2

3

R1

R2

R3

ID Column

Entity R (E2)

FIGURE 7: Ontological representation of data columns.

FIGURE 7: Ontological representation of data columns.

RQL,24 RDQL25 or Xcerpt,26 as long as the chosen query
language provides the required expressiveness. In the
present work, RDQL as a representation is analysed for all
RDF query languages, because RDQL is supported by the
Jena framework27 and has been submitted to the W3C.25 All
queries presented in this paper have been verified using the

Datatype
property

Datatype
property2

Datatype
propertyn

Property- 1: Set
range data type
as col-1 data type

Property- 2: Set
range data type
as col-2 data type

Property-n: Set
range data type
as col-n data type

ID PK Col1
Col2 Coln

Entity R(E)

1

2

3

4

R1

R2

R3

R4

R1

R2

R3

R4

R1

R2

R3

R4

FIGURE 7: Ontological representation of data columns.

Entity representation as class
Ontology property relationship

Class E
rdfs: domain

FIGURE 7: Ontological representation of data columns.

FI
G

U
RE

 7
: O

nt
ol

og
ic

al
 re

pr
es

en
ta

tio
n

of
 d

at
a

co
lu

m
ns

.

Research Article

S Afr J Sci 2012; 108(11/12) http://www.sajs.co.za

Page 6 of 10

Jena implementation of RDQL. Nevertheless, any RDF query
language could be evaluated accordingly. In the current
phase, the local ontology built from a previous phase is used,
as shown in Figure 8.

Therefore, in this study, we investigated whether all the
possible queries on the original relational database can be
expressed using RDQL on the Relational.OWL representation
of that specific database. In fact SQL has developed
throughout the years from a simple query language based
on relational calculus to a powerful language for integrating
data from across multiple data sources. Hence, we compared
the expressiveness of RDQL with only relational algebra8
and not with SQL (i.e. to determine if RDQL is relational
complete). The comparison was based on a simple database
containing personal and contact information of, for example,
business partners. It consisted of the following two relations:
Address (AddressID, Street, ZIP, City, CountryID) and
Country(CountryID, Name).

There are various positions on how to verify the relational
completeness of a query language28; we followed the method
of Choupo et al.29 regarding the set of relational operations
{σ, π, Ụ, −, ×}. We also included the join operation realisation
with RDQL because it is one of the most important operations
of relational queries. As RDQL is not closed, that is, the result
of an RDQL query is not an RDF triple but a list of possible
variable bindings, a direct comparison to the relational
algebra, which itself is closed, may in some cases be slightly
imprecise.

Selection
One of the basic operations of the relational algebra is the
selection σ. The expression

σ Name=’Australia’(r(Country))

would therefore select all tuples of the Country relation where
the attribute Name equals Australia. Because an OWL:Class
has been created for each relation in the database, a similar
constraint for the objects of this class should be applied to
obtain the corresponding result with the Semantic Web
version of our database. A possible RDQL query is

SELECT ?x, ?y, ?z
WHERE (?x, rdf:type, dbinst:COUNTRY)
(?x, dbinst:COUNTRY.NAME, ‘Australia’)
(?x, ?y, ?z)
USING dbinst for [...]
rdf for [...]

The RDQL query representing the selection contains three
main clauses – SELECT, WHERE and USING. As RDQL is
not closed, the three variables (?x, ?y and ?z) can be included
in the SELECT clause from which a valid RDF triple can be
created. In the first line of the WHERE clause the result set is
restricted to contain only objects of the type dbinst:COUNTRY
having their origin in the Country relation of our database.
The actual selection is performed in the next line, where
we enforce the value of the property dbinst:COUNTRY.
NAME of all the objects represented by the ?x variable to be
Australia. The last line of the WHERE clause is required to
select the entire set of triples describing the classes that fulfil
the conditions described above. Both the rdf and the dbinst
prefixes are defined in the USING clause and represent the
commonly used prefixes for RDF and the uniform resource
identifier (URI) for the schema of the database, respectively.
Because the same prefix definitions are used in the remaining
RDQL queries, they need not be described again.

Projection
Selection of the relevant attributes of a relation with the
projection operation π is possible. Thus the following
expression means that the Street and City attributes are
selected from the Address relation:

π Street,City (r(Address)).

FIGURE 8: The architecture of a semantic query.

Relational
database

Transformation
rules

Query

Result

Semantic query
engine

Ontology

equivalent

Relational database
query language

FIGURE 8: The architecture of a semantic query.

Query Result

Semantic query engine

Ontology
equivalent

Relational database
query language

Transformation
rules

Relational database

Research Article

S Afr J Sci 2012; 108(11/12) http://www.sajs.co.za

Page 7 of 10

Unlike for SQL, the SELECT clause of RDQL cannot be used
for the projection. It must be performed using the AND
clause where more complex constraints can be provided.

SELECT ?x, ?y, ?z
WHERE (?x, rdf:type, dbinst:ADDRESS)
(?x, ?y, ?z)
AND ((?y EQ dbinst:ADDRESS.STREET)||
(?y EQ dbinst:ADDRESS.CITY)
USING dbinst for [...]
rdf for [...]

As for the query described above, the result set is restricted to
objects of the dbinst:ADDRESS type in the WHERE clause. The
actual projection is performed in the AND part of the query,
where the properties of the result triples (i.e. ?y) are required
to be either dbinst:ADDRESS.STREET or dbinst:ADDRESS.
CITY. The result is a list of all the triples containing city or
street information within an address object.

Set union
The union Ụ operation unifies two union-compatible relations.25
The expression

π CountryID(r(Address)) Ụ π CountryID (r(Country))

therefore unifies all tuples from the CountryID attribute in the
Address with those of the Country relation. If the query of the
Semantic Web representation of the database using RDQL is
required, one first needs to perform the projection within the
AND clause to restrict the ?y variable to both COUNTRYID
attributes. The restriction to both classes is done in the
remaining two lines of the AND clause.

SELECT ?x, ?y, ?z
WHERE (?x, ?y, ?z)
(?x, rdf:type, ?a)
AND ((?y EQ dbinst:COUNTRY.COUNTRYID)||
(?y EQ dbinst:ADDRESS.COUNTRYID)) &&
((?a EQ dbinst:COUNTRY)||
(?a EQ dbinst:ADDRESS)
USING dbinst for [...]
rdf for [...]

This RDQL query therefore returns all COUNTRYIDs
originating in both the dbinst:COUNTRY and dbinst:ADDRESS
objects (i.e. the same result as our expression of the relational
algebra).

Set difference
In order to obtain all the tuples contained in one relation and
not in a second relation, the set difference – has been used.
Therefore, the expression

π CountryID (r(Country)) − π CountryID (r(Address))

returns all existing CountryIDs never used in the Address
relation. The projection has been introduced only to obtain
union compatibility.30

Within the corresponding RDQL query, objects of the type
dbinst:COUNTRY are represented by the variable ?a and
the dbinst:ADDRESS objects are represented by ?x. The set
difference constraint is specified in the AND clause which
refers to the values of both COUNTRYID properties assigned
to the variables in the WHERE clause.

SELECT ?b
WHERE (?a, dbinst:COUNTRY.COUNTRYID, ?b)
(?a, rdf:type, dbinst:COUNTRY)
(?x, dbinst:ADDRESS.COUNTRYID, ?y)
(?x, rdf:type, dbinst:ADDRESS)
AND !(?b EQ ?y)
USING dbinst for [...]
rdf for [...]

Similarly to the queries presented above, this RDQL query
returns exactly the same information as its corresponding
relational algebra expression.

Cartesian product
The Cartesian product × unifies two relations into a new
relation containing the complete set of attributes from
the two original relations. The values of this relation are a
combination of all tuples of the first relation and all tuples of
the second relation. The expression

r(Country) × r(Address)

therefore corresponds to a relation containing all attributes
from the Country relation and all those from the Address
relation. The original attributes are renamed to guarantee
their uniqueness.25 The number of values corresponds to (m *
n), where m is the number of values in the first table and n is
the number of values in the second table.

The definition of a Cartesian product within the Semantic
Web is more complex than it seems at first glance. Melnik31,
for example, does not mention a Cartesian product of RDF
triples or Semantic Web objects within his RDF algebra.
Intuitively, the Cartesian product of two sets with m and n
objects would be to create (m * n) new objects containing the
properties of two objects, one of each set respectively.32

As RDQL is not closed and the objects resulting from an
RDQL query cannot be received, the Cartesian product
should be expressed differently. There are two main options
for expressing the Cartesian product. Both are as close as
possible to the Cartesian product of the relational model.

The first option returns all possible combinations of two
properties, each from a different set of objects (i.e. one
property from the dbinst:COUNTRY and one from the
dbinst:ADDRESS objects) at a time:

SELECT ?a, ?b, ?c, ?x, ?y, ?z
WHERE (?a, ?b, ?c)
(?a, rdf:type, dbinst:COUNTRY)

Research Article

S Afr J Sci 2012; 108(11/12) http://www.sajs.co.za

Page 8 of 10

(?x, ?y, ?z)
(?x, rdf:type, dbinst:ADDRESS)
USING dbinst for [...]
rdf for [...]

The second option returns a list of all properties contained
in any object of the dbinst:COUNTRY and dbinst:ADDRESS
classes.

SELECT ?x, ?y, ?z
WHERE (?x, ?y, ?z)
(?x, rdf:type, ?a)
AND (?a EQ dbinst:COUNTRY)||
(?a EQ dbinst:ADDRESS)
USING dbinst for [...]
rdf for [...]

Intuitively, this query seems to be more adequate than the
one mentioned above. However, it is very similar to the
RDQL query in which the set union is expressed. The main
difference between both queries is the restriction in the union
query.

(Equi-)join
The most important relational operation is indeed the join
operation ∞ introduced by Trinkunas and Vasilecas33. The
θ join of two relations R1 and R2 relating to their attributes
B1 and B2 is the concatenation of the attributes of R1 and
R2, including their corresponding values, whenever attribute
B1 and B2 correlate with the θ condition. If θ is =, the join
operation is called equi-join. As the join operation usually is
stated in terms of the Cartesian product,31 the translation of
the join operation to RDQL may help to decide which of the
two possibilities previously described should be considered
the Cartesian product RDQL equivalent.

The two relations Address and Country can be joined with the
expression

r(Address) ∞ CountryID=CountryID r(Country).

Contrary to the natural join, the resulting relation contains all
the attributes from the first and second relations, including
both CountryID attributes.

Once again, as RDQL is not complete, an exact equivalent
query to the expression of the relational algebra just
mentioned cannot be found. However, similar constraints can
be expressed for both dbinst:COUNTRY and dbinst:ADDRESS
objects in the corresponding relation.

SELECT ?a, ?d, ?e
WHERE (?a, ?d, ?e)
 (?a, rdf:type, ?c)
 (?x, rdf:type, dbinst:COUNTRY)
 (?x, dbinst:COUNTRY.COUNTRYID, ?y)
 (?r, rdf:type, dbinst:ADDRESS)
 (?r, dbinst:ADDRESS.COUNTRYID, ?s)

AND (?c EQ dbinst:COUNTRY) ||
 (?c EQ dbinst:ADDRESS) &&
 (?y EQ ?s) &&
 ((?x EQ ?a) || (?r EQ ?a))
USING dbinst for [...]
 rdf for [...]

For expressing the required join condition between both
classes, at first, a free result variable ?a is defined. The objects
of the dbinst:COUNTRY class are bound to ?x and those of
the dbinst:ADDRESS class are bound to ?r. The values of
the relevant COUNTRYID attributes are bound to ?y and
?s correspondingly. The remaining relation between these
bound and unbound variables is specified in the AND clause,
where the result set is restricted to either a dbinst:COUNTRY
or a dbinst:ADDRESS object. The actual equality condition for
the values in ?y and in ?s from the join condition is given in
the next line. The free variable ?a is finally bound to the result
set in the last line of the AND clause.

TABLE 1: An example of a vcard table.
Person name First name Last name
John Smith John Smith
Matt Jones Matthew Jones
Sarah Jones Sarah Jones
Becky Smith Becky Smith

<owl:Class rdf:about= NS + “#vcard”/>
<owl:Class rdf:about= NS + “#vcard_pk_class”/>
<owl:InverseFunctionalProperty rdf:about=NS+”#vcard-pkOP”>
<rdfs:range rdf:resource=NS+ “#vcard-pk_class”/>
<rdfs:domain rdf:resource=NS+ “#vcard”/>
</owl: InverseFunctionalProperty>
<owl:Restriction rdf:about=NS+ “#vcard-pkMinRes”>
<owl:minCardinality
rdf:datatype=http://www.w3.org/2001/XMLSchema#string>
</owl:minCardinality>
<owl:onProperty rdf:resource=NS+ “# vcard-pkOP”/>
</owl:Restriction>
<owl:DatatypeProperty rdf:about=NS+ “#vcard-PersonName”>
<rdfs:domain rdf:resource=NS+ “# vcard–pk_Class”/>
<rdfs:range
rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about= NS +”#vcard_FirstName”>
<rdfs:range
rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>
<rdfs:domain rdf:resource= NS +”#vcard”/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about= NS +”# vcard_LastName”>
<rdfs:range
rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>
<rdfs:domain rdf:resource= NS +”#vcard”/>
</owl:DatatypeProperty>
<NS:vcard>
<NS:vcard-pkOP>
<NS:vcard-pk_Class rdf:about=NS+ “#pk_vcard”>
<NS:vcard-PersonName rdf:datatype =
“http://www.w3.org/2001/XMLSchema#string”>John Smith
</NS: vcard-PersonName>
</NS: vcard-pk_Class>
</NS:vcard-pkOP>
<NS: vcard_FirstName>John
</NS: vcard_FirstName>
<NS: vcard_LastName>Smith
</NS:vcard_LastName>
….
</NS:vcard>

FIGURE 9: The Web ontology language (OWL) ontology corresponding to the
vcard table in Table 1.

http://www.w3.org/2001/XMLSchema#string

Research Article

S Afr J Sci 2012; 108(11/12) http://www.sajs.co.za

Page 9 of 10

database named vcard into OWL ontology. Table 1 shows
the vcard table and Figure 9 shows the corresponding OWL
ontology.

Phase 2: Perform a semantic query on the local
ontology
Jena APIs are used for manipulating RDF graphs and OWL
files. Jena is a Java class library, and is composed mainly of
APIs and SPIs (system programming interfaces). This API
provides an interface for the Semantic Web application
developer that makes it an ideal programming toolkit
when the OWL file should be processed. In the OWL API,
the key OWL package for the application developer is com.
hp.hpl.jena.ontology.owl. This package contains interfaces
for representing models, resources, properties, literals,
statements and all the other key concepts of OWL, and
a ModelFactory for creating models. Figure 10 shows a
semantic query on a vcard table using OWL ontology built
from Phase 1.

A comparison of existing methods with the proposed method
is shown in Table 2.

Conclusion and future work
One of the major requirements of ontology-assisted query
formulation systems and for performing semantic queries
on a relational database is the formulation of a domain
ontology which includes a definition of domain metadata,
relationships and knowledge of the ontology. In this regard,
an ontology modelling approach has been identified which
transforms domain metadata and relationships into the
ontology schema to assist in the query formulation process.
Once the basic structural elements of the domain ontology are
defined, they are further enriched with domain knowledge.
Moreover, in order to generate relational query statements
as per the underlying database schema structure, ontology
database mappings are expressed as a set of correspondences
that relate the vocabulary of a relational model (table/
relation, column etc.) with the ontology model (concept,
property etc.). The method proposed here involves two main
phases. In the first phase, a local ontology is constructed from
a relational database. In the second phase, a semantic query
in a relational database is simulated and implemented using
RDQL. RDQL can be considered as a real alternative to the
commonly used SQL access to relational databases.

There is scope for extending this work by querying
distributed relational databases on the Semantic Web using a
global ontology. In order to achieve this goal, we propose that

import com.hp.hpl.jena.rdf.model.*;
import com.hp.hpl.jena.util.FileManager;
import com.hp.hpl.jena.vocabulary.*;
import java.io.*;
/** selecting the VCARD resources
public class query extends Object {
static final String inputFileName = “v1.rdf”;
public static void main (String args[]) {
// create an empty model
Model model = ModelFactory.createDefaultModel();
// use the FileManager to find the input file
InputStream in = FileManager.get().open(inputFileName);
if (in == null) {
throw new IllegalArgumentException(“File: “ +
inputFileName + “ not found”);
}
// read the RDF/OWL file
model.read(in, “”);
// select all the resources with a VCARD.FN property
ResIterator iter = model.listSubjectsWithProperty(VCARD.FN);
if (iter.hasNext()) {
System.out.println(“The database contains category for:”);
while (iter.hasNext()) {
System.out.println(“ “ + iter.nextResource()
.getRequiredProperty(VCARD.FN)
47
.getString());
}
} else {
System.out.println(“No vcards were found in the database”);
}
}
}

FIGURE 10: A Jena semantic query on a vcard table using a Web ontology
language (OWL) ontology.

TABLE 2: A comparison between existing methods and the method proposed.
Method Mode Relationship Data transform Implementation Semantic query
Astrova et al.12 Auto 1:1 No Yes No
Xu et al.3 Semi-auto 1:1 No No No
OGSRD13 Semi-auto 1:1 Yes Yes No
OWLFROMDB18 Auto 1:1 Yes Yes Yes
Proposed method Auto 1:1,1:N,1:M Yes Yes Yes

As to which of the queries described above should be
considered as the RDQL equivalent of the Cartesian product
remains undecided. However, the query defined in this
section certainly indicates the second alternative, where
a free variable is created. This question is likely to remain
unanswered until the queries of RDQL can be referred
to as closed.

Implementation
We propose to implement the method in two phases:

•	 Phase 1: transform a relational database to OWL ontology
•	 Phase 2: perform a semantic query on the local ontology

built from Phase 1

Phase 1: Transform a relational database to an
OWL file
In order to implement the transformation from a relational
database table to an OWL file, we propose a method using
RDQL. The proposed method is implemented in Java and
is based on the Jena application programming interface
(API). Table 1 and Figure 9 together illustrate the use of
transformation rules to export data on a vcard table from a

Research Article

S Afr J Sci 2012; 108(11/12) http://www.sajs.co.za

Page 10 of 10

a local ontology should first be built from a local relational
database and then all local ontologies can be integrated into
a global ontology.

Acknowledgements
Competing interests
We declare that we have no financial or personal relationships
which may have inappropriately influenced us in writing
this paper.

Authors’ contributions
R.J. was the project leader and S.M.S. was responsible for the
project design and for writing the manuscript.

References
1. Munir K, Odeh M, McClatchey R. Ontology assisted query reformulation

using the semantic and assertion capabilities of OWL-DL ontologies.
Paper presented at: IDEAS 2008. Proceedings of the Twelfth International
Database Engineering & Applications Symposium; 2008 Sep 10–12;
Coimbra, Portugal. ACM International Conference Proceedings Series 299.
2008; p. 81–90.

2. Laborda CR, Conrad S. Relational OWL – A data and schema representation
format based on OWL. Paper presented at: APCCM 2005. Proceedings of
the Second Asia-Pacific Conference on Conceptual Modelling; 2005 Dec
16–21; Australia. Sydney: Australian Computer Society, Inc; 2005. p. 89–96.

3. Xu Z, Zhang S, Dong Y. Mapping between relational database schema
and OWL ontology for deep annotation. Paper presented at: WI 2006.
Proceedings of the IEEE/WIC/ACM International Conference on Web
Intelligence; 2006 Aug 13–18; Washington DC, USA. Washington DC: IEEE
Computer Society; 2006. p. 548–552.

4. Munir K, Odeh M, Bloodsworth P, McClatchey R. Using assertion
capabilities of an OWL-based ontology for query formulation. Paper
presented at: ICTTA 2008. Proceedings of the 3rd International Conference
on Information & Communication Technologies: From theory to
applications; 2008 Apr 07–11; Damascus, Syria. Bristol: IEEE Xplore; 2008.
p. 1–6.

5. Calvanese D, Giacomo GD, Lembo D, Lenzerini M, Poggi A, Rosati
R. Linking data to ontologies: The description logic DL-LiteA. Paper
presented at: OWLED 2006. Proceedings of the 2nd Workshop on OWL:
Experiences and directions; 2006 April 03-08; New York, USA. New York:
OWLED, Inc; 2006. p. 1–10.

6. The Information Societies Technology Project: Health-e-Child [homepage
on the Internet]. No date [cited 2012 Sep 19]. Available from: www.health-
e-child.org

7. Zloof MM. Query-by-example: The invocation and definition of tables and
forms. Paper presented at: 1st International Conference on Very Large Data
Bases. Proceedings of the 1st International Conference on Very Large Data
Bases; 1975 Oct 19–24; New York, USA. New York: ACM, Inc.; 1975. p.
1–24.

8. Zloof MM. Query-by-example: A data base language. IBM Syst J.
1977;16(4):324–343. http://dx.doi.org/10.1147/sj.164.0324

9. Lim L, Wang H, Wang M. Unifying data and domain knowledge using
virtual views. Paper presented at: VLDB 2010. Proceedings of the 36th
International Conference on Very Large Data Bases; 2010 Sep 23–28;
Vienna, Austria . Vienna : ACM, Inc.; 2010. p. 255–266.

10. Freund J. Health-e-Child. An integrated biomedical platform for grid-based
pediatric applications. Paper presented at: Health-Grid 2006. Proceedings
of Health-Grid 2006; 2006 June 12–17; Valencia, Spain. Valencia: Stud
Health Technol Inform; 2006. p. 259–270.

11. Anjum A, Bloodsworth P, Branson A, et al. The requirements for ontologies
in medical data integration: A case study. Paper presented at: IDEAS
2007. Proceedings of the Eleventh International Database Engineering &
Applications Symposium; 2007 Sep 06–08; Alberta, Canada. Alberta: IEEE
Computer Society; 2007. p. 308–314.

12. Astrova I, Korda N, Kalja A. Rule-based transformation of SQL relational
databases to OWL ontologies. Paper presented at: the 2nd International
Conference on Metadata & Semantic Research. Proceedings of the 2nd
International Conference on Metadata & Semantic Research 2007 Oct 11–
12; Corfu, Greece. Corfu: MTSR; 2007. p. 1–16.

13. Vysniauskas E, Nemuraite L. Transforming ontology representation from
OWL to relational database. Inf Technol Control. 2006; 35(3A):333–343.

14. Belkhatir M, Mulhem P, Chiaramella Y. A conceptual image retrieval
architecture combining keyword-based querying with transparent and
penetrable query-by-example. Paper presented at: CIVR 2009. Proceedings
of the ACM International Conference on Image and Video Retrieval; 2009
Nov 13–18; Berlin, Germany. Berlin: Springer-Verlag; 2009. p. 528–539.

15. Boccignone G, Chianese A, Moscato V, Picariello A. Animate system for
query by example in image databases. Paper presented at: EuroIMSA
2010. Proceedings of the European Conference on Internet and Multimedia
Systems and Applications; 2010 Feb 21–23; Grindelwald, Switzerland.
Grindelwald: EuroIMSA; 2010. p. 451–456.

16. Aleixandre-Benavent R, Aleixandre-Tudo JL, Alcaide GG, Ferrer-Sapena
A, Aleixandre JL, Du Toit W. Bibliometric analysis of publications by
South African viticulture and oenology research centres. S Afr J Sci.
2012;108(5/6):74–84. http://dx.doi.org/10.4102/sajs.v108i5/6.661

17. Alalwan N, Zedan H, Siewe F. Generating OWL ontology for database
integration. Paper presented at: SEMAPRO ’09. Proceedings of the Third
International Conference on Advances in Semantic Processing; 2009 Oct
11–16; Sliema, Malta. Los Alamitos, CA: IEEE; 2009. p. 22–31. http://
dx.doi.org/10.1109/SEMAPRO.2009.21

18. Astrova I, Korda N, Kalja A. Toward the Semantic Web: Extracting OWL
ontologies from SQL relational schemata. Paper presented at: IADIS 2006.
Proceedings of the International Conference WWW/Internet; 2006 Oct 5–8;
Murcia, Spain. Murcia: IADIS Press; 2006. p. 62–66.

19. Chang-rui YU, Hong-wei W, Fu J. Development method of domain
ontology based on reverse engineering. Appl Res Comput. 2006;35:1–5.

20. Olajubu EA, Aderounmu GA, Adagunodo ER. Network resources
management in a multi-agent system: A simulative approach. S Afr J Sci.
2010;106(9/10):31–36. http://dx.doi.org/10.4102/sajs.v106i9/10.322

21. Fortuna B, Mladeni D, Grobelnik M. Semi-automatic construction of topic
ontologies. Paper presented at: Semantics, Web and Mining. Proceedings
of Semantics, Web and Mining; 2006 Sep 14–16; Berlin, Germany. Berlin:
Springer; 2006. p. 121–131.

22. Sedighi SM, Javidan R. A novel method for improving the efficiency of
automatic construction of ontology from a relational database. Int J Phys
Sci. 2012;7(13):2085–2092. http://dx.doi.org/10.5897/IJPS12.072

23. Adesina AO, Agbele KK, Februarie R, Abidoye AP, Nyongesa HO.
Ensuring the security and privacy of information in mobile health-care
communication systems. S Afr J Sci. 2011;107(9/10):26–32. http://dx.doi.
org/10.4102/sajs.v107i9/10.508

24. Codd EF. Relational completeness of data base sublanguages. In: Rustin
R, editor. Database systems. IBM Research Report RJ 987. San Jose, CA:
Prentice Hall, 1972; p. 65–98.

25. Seaborne A. RDQL – A query language for RDF. Bristol: W3C Member
Submission ; 2004.

26. Bry FO, Schaffert S. The XML query language Xcerpt: Design principles,
examples, and semantics. Lecture Notes in Computer Science. Munich:
Springer-Verlag, 2002; p. 295–310.

27. Fahmi I. Jena – A Semantic Web framework for Java. Tenerife: SWHi Blog:
; 2005.

28. Navathe SB, Elmasri RA. Fundamentals of database systems. 3rd ed.
Boston: Addison-Wesley Longman Publishing Co. Inc.; 2001.

29. Choupo AK, Berti-Equille L, Morin A. Optimizing progressive query-by-
example over pre-clustered large image databases. Paper presented at:
the 2nd International Workshop on Computer Vision Meets Databases.
Proceedings of the 2nd International Workshop on Computer Vision Meets
Databases; 2005 June 13–16; New York, USA. New York: ACM; 2005. p.
13–20.

30. Date CJ. A formal definition of the relational model. ACM SIGMOD
Record. 1982;13(1):18–29. http://dx.doi.org/10.1145/984514.984515

31. Melnik S. Algebraic specification for RDF models. California: IEEE
Computer Society; 1999.

32. Calvanese D, Giacomo GD, Lembo D, Lenzerini M, Poggi A, Rosati
R. Ontology-based database access. Paper presented at: SEBD 2007.
Proceedings of the 15th Italian Symposium on Database Systems; 2007 June
17–20; Fasano, Italy. Fasano: SEBD; 2007. p. 324–331.

33. Trinkunas J, Vasilecas O. A graph oriented model for ontology
transformation into conceptual data model. Inf Technol Control.
2007;36(1A):126–132.

http://www.health-e-child.org
http://www.health-e-child.org
http://dx.doi.org/10.1147/sj.164.0324
http://www.ncbi.nlm.nih.gov/pubmed/16823144
http://www.ncbi.nlm.nih.gov/pubmed/16823144
http://dx.doi.org/10.4102/sajs.v108i5/6.661
http://dx.doi.org/10.1109/SEMAPRO.2009.21
http://dx.doi.org/10.1109/SEMAPRO.2009.21
http://dx.doi.org/10.4102/sajs.v106i9/10.322
http://dx.doi.org/10.4102/sajs.v107i9/10.508
http://dx.doi.org/10.4102/sajs.v107i9/10.508
http://dx.doi.org/10.1145/984514.984515

